Abstract:
A hearing aid (1) adapted for operation in a sound amplification mode and for operation in an occlusion measurement mode, has a microphone (10) adapted for transforming an acoustic sound level external to a hearing aid users ear canal (4) into a first electrical signal which is guided to an A/D converter forming a first digitized electrical signal. The hearing aid has signal processing means with a filter bank (41, 42) with means for splitting an electrical signal into frequency bands, and a receiver (20) adapted for generating acoustic sounds in the ear canal of a user when in said amplification mode, and for transforming the acoustic sound level in the ear canal into a second electrical signal, when in occlusion measurement mode. The invention also provides a system and a method for measuring the occlusion effect.
Abstract:
A hearing aid earpiece (1) is provided, that is custom fitted to the individual shape of the ear canal of a user and manufactured in a rapid prototyping process. The earpiece comprises a sound conduit (3) that is adapted for conveying an acoustic signal from an acoustic inlet port towards an acoustic outlet port and wherein the sound conduit is looped such that at least one geometrical plane will intersect the sound conduit at least three times thereby providing a length of the sound conduit exceeding a largest outer dimension of the hearing aid earpiece. The invention also relates to a hearing aid comprising such a hearing aid earpiece and a method for manufacturing such an earpiece.
Abstract:
A method of combining at least two audio signals for generating an enhanced system output signal is described. The method comprises the steps of: a) measuring a sound signal at a first spatial position using a first transducer, such as a first microphone, in order to generate a first audio signal comprising a first target signal portion and a first noise signal portion, b) measuring the sound signal at a second spatial position using a second transducer, such as a second microphone, in order to generate a second audio signal comprising a second target signal portion and a second noise signal portion, c) processing the first audio signal in order to phase match and amplitude match the first target signal with the second target signal within a predetermined frequency range and generating a first processed output, d) calculating the difference between the second audio signal and the first processed output in order to generate a subtraction output, e) calculating the sum of the second audio signal and the first processed output in order to generate a summation output, f) processing the subtraction output in order to minimise a contribution from the noise signal portions to the system output signal and generating a second processed output, and g) calculating the difference between the summation output and the second processed output in order to generate the system output signal.
Abstract:
A hearing aid earpiece (1) is provided, that is custom fitted to the individual shape of the ear canal of a user and manufactured in a rapid prototyping process. The earpiece comprises a sound conduit (3) that is adapted for conveying an acoustic signal from an acoustic inlet port towards an acoustic outlet port and wherein the sound conduit is looped such that at least one geometrical plane will intersect the sound conduit at least three times thereby providing a length of the sound conduit exceeding a largest outer dimension of the hearing aid earpiece. The invention also relates to a hearing aid comprising such a hearing aid earpiece and a method for manufacturing such an earpiece.
Abstract:
A noise dosimeter (xOO) for monitoring the exposure to noise of a user wearing a headset is described. The noise dosimeter includes a housing to be worn external to the ear of the user, an earpiece (xO1) for placement in or near an ear canal of the user, a microphone transducer, and a signal transmission means (xO3) for transmission of a signal from the earpiece (xO1) to the housing. The earpiece (xO1) comprises sound collection means (xO4) for collecting sound emitted from a speaker of the headset, and the housing comprises signal processing circuitry for processing and accumulating signals from the microphone transducer in order to evaluate a user's exposure to noise when using the headset. The noise dosimeter can be integrated in a headset.
Abstract:
A noise dosimeter (x00) for monitoring the exposure to noise of a user wearing a headset is described. The noise dosimeter includes a housing to be worn external to the ear of the user, an earpiece (x01) for placement in or near an ear canal of the user, a microphone transducer, and a signal transmission means (x03) for transmission of a signal from the earpiece (x01) to the housing. The earpiece (x01) comprises sound collection means (x04) for collecting sound emitted from a speaker of the headset, and the housing comprises signal processing circuitry for processing and accumulating signals from the microphone transducer in order to evaluate a user's exposure to noise when using the headset. The noise dosimeter can be integrated in a headset.
Abstract:
Microphone array which comprises a multiple of microphones which are arranged in an elongated element or housing, in which the individual microphones in the microphone array are arranged in pairs. The individual microphones in each pair are disposed on each their side of a centerline for the microphone array, where the signals from the microphones are summated in the formation of the output signal from the microphone array. The microphones on each side of the centerline of the microphone array are disposed with non-equidistant spacing between them, and low-pass filters are coupled between each microphone and a summation link, in that the microphones associated with one and the same pair are connected to low-pass filters having the same cut-off frequency. The cut-off frequency for the low-pass filters is different for each pair of microphones, in that the cut-off frequency is lowest for that pair of microphones which lie furthest away from the centerline, and is higher the closer the pair of microphones lies to the centerline. The microphone array is arranged in such a manner that the distances between the microphones and the cut-off frequencies for the low-pass filters are mutually adjusted in relation to one another.
Abstract:
A system for estimating the occlusion effect comprises a hearing aid adapted for being set up for operation in an occlusion measurement mode. The hearing aid comprises a first transducer (9) for transforming an acoustic sound level external to a hearing aid user's ear canal into a first electrical signal. The hearing aid comprises a second transducer (10) for transforming the acoustic sound level in the occluded ear canal into a second electrical signal. The system comprises a filter bank (21, 22) for splitting the first and the second digitized electrical signals into a first and a second band split digitized electrical signal, respectively and the estimated sound pressure must be a factor √{square root over (r)} larger than the estimated leakage when deciding if the estimated sound pressure in a given band can be applied in the calculation of the occlusion effect. The invention further provides a method for estimating the occlusion effect.
Abstract:
A method of combining at least two audio signals for generating an enhanced system output signal is described. The method comprises the steps of: a) measuring a sound signal at a first spatial position using a first transducer, such as a first microphone, in order to generate a first audio signal comprising a first target signal portion and a first noise signal portion, b) measuring the sound signal at a second spatial position using a second transducer, such as a second microphone, in order to generate a second audio signal comprising a second target signal portion and a second noise signal portion, c) processing the first audio signal in order to phase match and amplitude match the first target signal with the second target signal within a predetermined frequency range and generating a first processed output, d) calculating the difference between the second audio signal and the first processed output in order to generate a subtraction output, e) calculating the sum of the second audio signal and the first processed output in order to generate a summation output, f) processing the subtraction output in order to minimise a contribution from the noise signal portions to the system output signal and generating a second processed output, and g) calculating the difference between the summation output and the second processed output in order to generate the system output signal.