摘要:
What is described here is a method of manufacturing spectacles comprising individual progressive ophthalmic lenses, including the following steps: selection of a spectacle frame, detection of the shape of the lens rings with a precision better than ±0.5 mm in the x- and y-directions (data set 1), detecting the intersection points of the lines of sight through the plane of the lens rings for at least two design distances of the progressive ophthalmic lenses with a precision better than ±1 mm (data set 2) selection and positioning relative to the lens rings of a spherical or non-spherical surface in view of the prescription data, using the data sets 1 and 2 (data set 3), computing and positioning the progressive surface relative to the selected surface, with minimization of the critical thickness of the ophthalmic lens, using the data sets 1 to 3 (data set 4), manufacturing the progressive surfaces as well as edges of the ophthalmic lenses from a non-edged semi-finished product finished on one side, using the data sets 1 to 4.
摘要:
Described is a spectacle lens comprising a region (distance portion) designed for viewing at large distances and in particular “to infinity”, a region (near portion) designed for viewing at short distances and in particular “reading distances”, and a progressive zone disposed between the distance portion and the near portion, in which the power of the spectacle lens increases from a value at a distance reference point located in the distance portion to a value at the near reference point located in the near portion along a curve (principal line) veering towards the nose. The invention is distinct in that the astigmatic deviation, i.e. the difference between the prescribed and the actual astigmatism along circles having a center lying 4 mm below the centration point and having a diameter of 10 to 40 mm satisfies the following conditions: two local minima occur which on a “right-hand side spectacle lens” are located at 95°±10° (according to TABO) and at 280°±10°, and on a “left-hand side spectacle lens” at 85°±10° and 260°±10°; and two local maxima occur which on both a “right-hand side spectacle lens” and also a “left-hand-side spectacle lens” are located at 215°±10° and 335°±10°.
摘要:
A spectacle lens is provided with a region (distance portion) designed for viewing at greater distances and, in particular, “to infinity”, a region (near portion) designed for viewing at short distances and, in particular, “reading distances”, and a progression zone disposed between the distance portion and the near portion, in which the power of the spectacle lens increases from the value in the distance reference point located in the distance portion to the value at the near reference point located in the near portion along a line (principal meridian) curving towards the nose. The invention is marked by specific conditions for the astigmatic deviation and/or the mean “as worn” power being observed.
摘要:
The invention relates to a method of producing a single-strength spectacle lens while taking into account an individual spectacle wearer's data, the single-strength spectacle lens having a rotationally symmetrical base surface and a rotationally symmetrical aspherical or atoric prescription surface, comprising the following steps: Acquisition of an individual spectacle wearer's data; selection of a spectacle lens blank with a predetermined base surface from a group of spectacle lens blanks; and calculation and optimization of the prescription surface while taking into account at least a part of the individual spectacle wearer's data in addition to an adaptation of the dioptric effect by the prescription surface to the spectacle wearer's prescription. The invention also relates to a corresponding system for producing a single-strength spectacle lens and to an individual single-strength spectacle lens.
摘要:
The present description refers to a series of progressive lenses, wherein the lenses present a different surface power in the distance-vision part and/or a different increase of the surface power from the distance-vision part towards the near-vision part (termed addition Add hereinafter), and whereof each comprises a front surface having a continuously varying surface power which increases from the respective value BK �dpt!, which is suitable for distance vision, at the point having the coordinates x=0 mm, y=8 mm in the lower region of the distance-vision part along a wound line (primary line), which coincides approximately with the primary line of view, with eyes dropped, towards a value suitable for near vision in the upper region of the near-vision part, which value is greater than the value of the surface power BK in the lower region of the distance-vision part by the value ADD �dpt! of the addition, and having a surface, in particular the surface on the concave side, which has a spherical shape or an aspherical shape, respectively. The present invention is characterized by the aspects that for the maximum height y of the line on which the surface astigmatism is 0.5 dpt and which defines the lower limit of the region suitable for clear vision on either side of the primary line at a distance of 25 mm, applies: y=f(Add,BK)=b(BK)+a/Add*1000) b(BK)=a.sub.0 +a.sub.1 *BK+a.sub.2 *BK.sup.2 and that for the coefficients on the nose side and the temporal side of the primary line applies: ______________________________________ nose side temporal side ______________________________________ a -8.5 .+-. 20% -7.5 .+-. 20% a.sub.0 18...19 mm 19...20 a.sub.1 -3580 .+-. 29% mm.sup.2 -4520 .+-. 20% mm.sup.2 a.sub.2 390 000 .+-. 20% mm.sup.3 480 000 .+-. 20% mm.sup.3. ______________________________________
摘要:
The invention relates to a method of producing a single-strength spectacle lens while taking into account an individual spectacle wearer's data, the single-strength spectacle lens having a rotationally symmetrical base surface and a rotationally symmetrical aspherical or atoric prescription surface, comprising the following steps: Acquisition of an individual spectacle wearer's data; selection of a spectacle lens blank with a predetermined base surface from a group of spectacle lens blanks; and calculation and optimization of the prescription surface while taking into account at least a part of the individual spectacle wearer's data in addition to an adaptation of the dioptric effect by the prescription surface to the spectacle wearer's prescription. The invention also relates to a corresponding system for producing a single-strength spectacle lens and to an individual single-strength spectacle lens.
摘要:
What is described here is a method of manufacturing progressive ophthalmic lenses whereof each is produced in correspondence with the individual data of a specific spectacle wearer, and whereof each presents a first surface having a defined surface power value in the surface apex, and presents a non-spherical second surface (prescription surface) whose surface power varies along a line (referred to as principal line in the following) that follows at least approximately the main line of sight when the view is lowered, such that the ophthalmic lens produces a first effect in a first reference point, which is suitable for viewing in a first distance envisaged for the respective application, and that this effect varies along the principal line by a predetermined value (addition Add) to a second value present in a second reference point, which is suitable for viewing in a second distance envisaged for the respective application, and whose second surface possibly presents a surface astigmatism optionally for partly compensating an ocular astigmatism and/or the astigmatism of oblique bundles. The inventive method excels itself by the following steps of operation: initially, ophthalmic lens blanks (blanks) are produced with a finished first surface in a defined—particularly comparatively narrow—grading of the surface power value, starting out from the individual data, specifically at least the respective required first effect Df the addition Add and possibly the value and the axial position of the ocular astigmatism of the spectacle wearer for whom the respective ophthalmic lens is intended, and on the basis of further design data, a first surface with a defined surface power value D, is selected and the second surface is so computed that the surface power value D2f of the second surface, which is required in the first reference point, is adjusted in correspondence with the respective selected surface power D, of the first surface so that, as a function of the respective design data for one and the same first effect D, and one and the same addition Add and possibly also one and the same value and axial position of the ocular astigmatism, different pairings of first surfaces, which are distinguished from each other at least with respect to the surface power value D1 and of associated second surfaces computed on an individualized basis in each case are achieved.
摘要:
A spectacle lens comprises a region (distance portion) designed for viewing at greater distances, in particular, to infinity; a region (near portion) designed for viewing at short distances and, in particular, “reading distances”; and a progression zone located between the distance portion and the near portion, in which the power of the spectacle lens increases from a value at the distance reference point located in the distance portion to the value at the near reference point located in the near portion along a line (principal meridian) curving towards the nose. It is one of the characteristics of the invention that for minimizing the change of imaging properties with horizontal movements of the gaze along a curve described by the points of penetration of the principal rays through the front surface, these principal rays passing through a point having the coordinates (x−dx, y, s) at the beginning of the movement and a point having the coordinates (x +dx, y, s) at the end of the movement, at s=−40 mm and dx=10 mm particular conditions apply.
摘要:
A spectacle lens comprises a region (distance portion) designed for viewing at large distances and in particular “to infinity”; a region (near portion) designed for viewing at short distances and in particular “reading distances”; and a progressive zone disposed between the distance portion and the near portion, in which a power of the spectacle lens increases from a value at a distance reference point located in the distance portion to a value at a near reference point located in the near portion along a curve (principal line) veering towards a nose. The invention is distinct in that, for minimizing a change of binocular imaging properties with horizontal movements of glance, a lift (difference between a maximum and a minimum value occurring during a movement) of binocular imaging properties when a moving object is being followed, is smaller than a physiologically pre-determined limiting amount.
摘要:
A method for optimizing an atoroidal surface of an optical lens, in particular a spectacle lens, having at least one plane of symmetry is characterized by a combination of the following features: dividing the atoroidal surface having at least one plane of symmetry into at least two regions separated by the at least one plane of symmetry; representing one of the separate regions (represented region) of this surface by a set of coefficients of B spline functions; computing sagittal heights of the represented region by B spline interpolation; computing sagittal heights in at least one other region by mirroring coefficients or coordinates at the at least one plane of symmetry; and optimizing the atoroidal surface only by varying the set of B spline coefficients of the represented region.