摘要:
A precipitation-hardening-type Ni-base alloy exhibiting improved resistance to stress corrosion cracking in a sour gas atmosphere containing elemental sulfur at high temperatures is disclosed. The alloy comprises essentially, by weight %;______________________________________Cr: 12-25%, Mo: 5.5-15%,Nb: 4.0-6.0%, Fe: 5.0-25%,Ni: 45-60%, C: 0.050% or less,Si: 0.50% or less, Mn: 1.0% or less,P: 0.025% or less, S: 0.0050% or less,N: 0.050% or less,Ti: 0-1.0%, Al: 0-2.0%.______________________________________
摘要:
A precipitation-hardening-type Ni-base alloy exhibiting improved resistance to stress corrosion cracking in a sour gas atmosphere containing elemental sulfur at high temperatures is disclosed. The alloy consists essentially of, by weight %;______________________________________ Cr: 12-25%, Mo: over 9.0 and up to 15%, Nb: 4.0-6.0%, Fe: 5.0-25%, Ni: 45-60%, C: 0.050% or less, Si: 0.50% or less, Mn: 1.0% or less, P: 0.025% or less, S: 0.0050% or less, N: 0.050% or less, Ti: 0.46-1.0%, Al: 0-2.0%. ______________________________________
摘要:
A precipitation-hardening Ni-base alloy exhibiting improved resistance to corrosion under a corrosive environment containing at least one of hydrogen sulfide, carbon dioxide and chloride ions and method of producing the same are disclosed. The alloy is of the .gamma."-phase, or (.gamma.'+.gamma.")-phase precipitation hardening type in which Ti is restricted to less than 0.40% and is comprised of:C: not greater than 0.050%,Si: not greater than 0.50%,Mn: not greater than 2.0%,Ni: 40-60%,Cr: 18-27%,Ti: less than 0.40%,Mo: 2.5-5.5% and/or W: not greater than 11%, t 2.5%.ltoreq.Mo+1/2W.ltoreq.5.5%,Al: not greater than than 2.0%,Nb: 2.5-6.0% and/or Ta: not greater than 2.0%, 2.5%.ltoreq.Nb+1/2Ta.ltoreq.6.0%.
摘要翻译:公开了一种在包含硫化氢,二氧化碳和氯化物离子中的至少一种的腐蚀环境下具有改善的耐腐蚀性的沉淀硬化Ni基合金及其制造方法。 该合金是γ“相,或(γ'+γ”)相沉淀硬化型,其中Ti限制在小于0.40%,由以下组成:C:不大于0.050%,Si: 不大于0.50%,Mn:不大于2.0%,Ni:40-60%,Cr:18-27%,Ti:小于0.40%,Mo:2.5-5.5%和/或W:不大于11 %,t 2.5% = Mo + 1 / 2W <5.5%,Al:不大于2.0%,Nb:2.5-6.0%和/或Ta:不大于2.0%,2.5% Nb + 1 / 2Ta <6.0%。
摘要:
An alloy useful for manufacturing high strength deep well casing, tubing and drill pipes for use in oil-well operations is disclosed. The alloy exhibits improved resistance to stress corrosion cracking in the H.sub.2 S--CO.sub.2 --Cl.sup.- -environment, which comprises the following alloy composition:______________________________________ C: .ltoreq.0.1% Si: .ltoreq.1.0% Mn: .ltoreq.2.0% P: .ltoreq.0.030% S: .ltoreq.0.005% N: 0-0.30% Ni: 25-60% Cr: 22.5-35% Mo: 0-7.5% (excl.) W: 0-15% (excl.) Cr (%) + 10Mo (%) + 5W (%) .gtoreq. 70% 3.5% .ltoreq. Mo (%) + 1/2W (%)
摘要:
An alloy useful for manufacturing high strength deep well casing, tubing and drill pipes for use in oil-well operations is disclosed. The alloy exhibits improved resistance to stress corrosion cracking in the H.sub.2 S--CO.sub.2 --Cl.sup.- environment, which comprises the following alloy composition:______________________________________ C: .ltoreq. 0.1% Si: .ltoreq. 1.0% Mn: .ltoreq. 2.0% P: .ltoreq. 0.030% S: .ltoreq. 0.005% N: 0-0.30% Ni: 25-60% Cr: 22.5-40% Mo: 0-3.5% (excl.) W: 0-7% (excl.) Cr (%) + 10Mo (%) + 5W (%) .gtoreq. 50%, 1.0% .ltoreq. Mo (%) + 1/2W (%)
摘要:
A process for manufacturing high strength deep well casing, tubing, and drill pipes, which have improved resistance to stress corrosion cracking is disclosed. The process comprises the steps of preparing an alloy composition which is:______________________________________ C .ltoreq.0.05% Si .ltoreq.1.0% Mn .ltoreq.2.0% P .ltoreq.0.030% S .ltoreq.0.005% N 0-0.30% Ni 25-60% Cr 15-35% Mo 0-12% W 0-24% Cr (%) + 10Mo (%) + 5W (%) .gtoreq. 50% 1.5% .ltoreq. Mo (%) + 1/2W (%) .ltoreq. 12% Cu 0-2.0% Co 0-2.0% Rare Earths 0-0.10% Y 0-0.20% Mg 0-0.10% Ti 0-0.5% Ca 0-0.10% and incidental impurities balance; ______________________________________ applying, after hot working, the solid solution treatment to the alloy at a temperature of from the lower limit temperature (.degree.C.) defined by the following empirical formula: 260 log C(%)+1300 to the upper limit temperature (.degree.C. ) defined by the following empirical formula: 16Mo(%)+10W(%)+10Cr(%)+777 for a period of time of not longer than 2 hours; and applying cold working to the resulting alloy with a reduction in thickness of 10-60%. The hot working may be carried out with a reduction in thickness of 10% or more for the temperature range of not higher than the recrystallizing temperature thereof.
摘要:
An alloy useful for manufacturing high strength deep well casing, tubing and drill pipes for use in oil-well operations is disclosed. The alloy exhibits improved resistance to stress corrosion cracking in the H.sub.2 S-CO.sub.2 -Cl.sup.- environment, which comprises the following alloy composition:______________________________________ C: .ltoreq.0.1% Si: .ltoreq.1.0% Mn: .ltoreq.2.0% P: .ltoreq.0.030% S: .ltoreq.0.005% N: 0-0.30% Ni: 30-60% Cr: 15-35% Mo: 0-12% W: 0-24% Cr(%) + 10Mo(%) + 5W(%) .gtoreq. 110% 7.5% .ltoreq. Mo(%) + 1/2W(%) .ltoreq. 12% Cu: 0-2.0% Co: 0-2.0% rare earths: 0-0.10% Y: 0-0.20% Mg: 0-0.10% Ca: 0-0.10% one or more of Nb, Ti, Ta, Zr and V in the total amount of 0.5-4.0%, if necessary Fe and incidental impurities: balance. ______________________________________
摘要:
The manufacturing method of the present invention comprises steps (1) through (8) which are sequentially arranged, and the steps or equipment from the production of billets to end products are connected in the same single continuous manufacturing line:(1) a step of producing a round billet by continuous casting,(2) a step of cooling the billet to a temperature not higher than an A.sub.r1 transformation temperature,(3) a step of heating the billet to a temperature which allows piercing of the billet,(4) a step of piercing, at a strain rate of not higher than 200/sec, the billet to obtain a hollow shell,(5) a step to form a steel pipe by elongating and finish rolling the hollow shell using a continuous elongating mill and a finish rolling mill which are directly connected to each other, at a predetermined average strain rate, a predetermined reduction ratio, and at a predetermined finishing temperature,(6) a step of recrystallizing the steel pipe at a temperature of not lower than an Ar.sub.r3 transformation temperature,(7) a step of quenching the steel pipe from a temperature not lower than an A.sub.r3 transformation temperature, and(8) a step of tempering the steel pipe.
摘要:
A method for a thermal treatment of a nickel based alloy, characterized in that said nickel based alloy for a material which will be subjected to a high-temperature and high-pressure water or vapor comprises, in terms of % by weight, 58% or more of Ni, 25 to 35% of Cr, 0.003% or less of B, 0.012 to 0.035% of C, 1% or less of Mn, 0.5% or less of Si, 0.015% or less of P, 0.015% or less of S, and the residue of Fe and usual impurities; in a first thermal treatment process, said nickel based alloy is heated and retained at a temperature of T.degree. C. to (T+100).degree.C. and is cooled at a cooling rate of a furnace cooling rate or more; and in a second thermal treatment process, said nickel based alloy is then retained at a temperature of 600.degree. to 750.degree. C. and at a temperature within a sensitization recovery range for a period of 0.1 to 100 hours and is cooled at a cooling rate of said furnace cooling rate or more.