摘要:
There is provides a heat exchanger comprising: a plurality of tubes (110) stacked on each other; and a pair of header tanks (140), each header tank (140) having a flow section (151) in which fluid flows, extending in a direction of stack of the tubes (110), wherein both end sections (111) of the tubes (110) in the longitudinal direction are joined to the pair of header tanks (140), the flow section (151) of each header tank (140) and the inside of each tube (110) are communicated with each other, a tip position (a) of the tube end section (111) is arranged in an outside region of the flow section (151), and an inner wall width size (b) of the flow section (151) is smaller than a size (c) in the width direction of the header tank (140) at the tube end section (111).
摘要:
There is provides a heat exchanger comprising: a plurality of tubes (110) stacked on each other; and a pair of header tanks (140), each header tank (140) having a flow section (151) in which fluid flows, extending in a direction of stack of the tubes (110), wherein both end sections (111) of the tubes (110) in the longitudinal direction are joined to the pair of header tanks (140), the flow section (151) of each header tank (140) and the inside of each tube (110) are communicated with each other, a tip position (a) of the tube end section (111) is arranged in an outside region of the flow section (151), and an inner wall width size (b) of the flow section (151) is smaller than a size (c) in the width direction of the header tank (140) at the tube end section (111).
摘要:
There is provides a heat exchanger comprising: a plurality of tubes (110) stacked on each other; and a pair of header tanks (140), each header tank (140) having a flow section (151) in which fluid flows, extending in a direction of stack of the tubes (110), wherein both end sections (111) of the tubes (110) in the longitudinal direction are joined to the pair of header tanks (140), the flow section (151) of each header tank (140) and the inside of each tube (110) are communicated with each other, a tip position (a) of the tube end section (111) is arranged in an outside region of the flow section (151), and an inner wall width size (b) of the flow section (151) is smaller than a size (c) in the width direction of the header tank (140) at the tube end section (111).
摘要:
A heat exchanger includes aligned tubes and upper and lower header tank units, each of which includes two fluid conduits communicated with the tubes. Each header tank unit further includes an intermediate plate, which defines a plurality of communication holes therethrough. Each communication hole communicates between a corresponding one of the tubes and a corresponding one of chambers defined by the fluid conduits of the header tank unit such that each tube is spaced apart from the corresponding one of the chambers.
摘要:
In a tube for a heat exchanger, a plurality of passages is defined. The passages are arranged in rows parallel to a major axis of the tube cross-section and staggered. When the tube is extruded, an extrusion material can flow around dies for forming passages and easily merge between the dies. Since walls between adjacent passages can be easily formed, formability of the tube is improved.
摘要:
In a heat exchanger for performing heat exchange between a first fluid and a second fluid, a corrugated plate is provided in a first tube defining a first fluid passage through which the first fluid flows. The corrugated plate forms ridges and grooves. Walls between the ridges and grooves include first walls, second walls and third walls. Each first wall defines an opening between its second end and a second side wall of the first tube. Each second wall defines openings at its first and second ends. Each third wall defines an opening between its first end and the first side wall of the first tube. The first to third walls are reiterative in an order of the first wall, the second wall, the third wall and the second wall. Therefore, the first fluid makes double serpentine flows each of which makes alternately large and small turns.
摘要:
A heat exchanger includes a first tube in which water flows and a second tube in which refrigerant flows, and performs heat exchange between water and refrigerant. The first tube and the second tube are bonded to each other by brazing at joint surfaces thereof such that water flow crosses refrigerant flow perpendicularly. The joint surface of the first tube is divided into several surface regions by grooves. Accordingly, the joint surface of the first tube can be brazed to the joint surface of the second tube uniformly.
摘要:
A phosphorus-copper brazing material formed of a phosphorus-copper brazing alloy which can easily be cold-worked into a thin sheet, a brazing sheet having a brazing layer of the phosphorus-copper brazing alloy, and a flow path structure for heat exchangers constructed by brazing with the alloy, are such that the phosphorus-copper brazing material includes a phosphorus-copper brazing alloy containing Cu as a major component and phosphorus of not less than about 2.0 mass % to not more than about 3.2 mass %. The brazing sheet includes a metal sheet, and a brazing material layer that is integral with the metal sheet on at least one side of the metal sheet, the brazing material layer being formed of the phosphorus-copper brazing alloy. The metal sheet may be formed of copper or a copper alloy containing Cu as a major component.
摘要:
In a heat exchanger for performing heat exchange between a first fluid and a second fluid, a corrugated plate is provided in a first tube defining a first fluid passage through which the first fluid flows. The corrugated plate forms ridges and grooves. Walls between the ridges and grooves include first walls, second walls and third walls. Each first wall defines an opening between its second end and a second side wall of the first tube. Each second wall defines openings at its first and second ends. Each third wall defines an opening between its first end and the first side wall of the first tube. The first to third walls are reiterative in an order of the first wall, the second wall, the third wall and the second wall. Therefore, the first fluid makes double serpentine flows each of which makes alternately large and small turns.
摘要:
In an evaporator, each fin is disposed between adjacent tubes in a tube stacking direction, and each of the tubes includes at least first and second tube parts lined to have a space therebetween in a flow direction of air passing between the adjacent tubes. The first tube part has therein a first refrigerant passage that is completely separately from a second refrigerant passage of the second tube part. Furthermore, the fin has at least one open portion that is opened from an end of the fin in the tube stacking direction to a predetermined portion, and the open portion is provided in the fin except for a position in the air flow direction, corresponding to the space. Therefore, the strength of the evaporator can be increased while condensed water on the evaporator can be effectively drained.