摘要:
The present invention provides an electrolysis cell for synthesizing a perchloric acid compound, the electrolysis cell having: a feedstock solution containing a chloride or a chloric acid compound; a cathode; and an anode having an electroconductive diamond as an anode substance, the anode electrolytically oxidizing the chloride or the chloric acid compound to synthesize the perchloric acid compound, and a method for electrolytically synthesizing a perchloric acid compound.
摘要:
A diamond electrode having a prolonged life by combining a conventional diamond electrode having a relatively short life with other components is provided. A diamond electrode for electrolysis includes an electrode substrate, at least the surface of which comprises Magneli phase titanium oxide, and conductive diamond supported as an electrode catalyst on a surface of the electrode. The electrode catalyst may contain a titanium oxide powder. Magneli phase titanium oxide improves conductivity without forming a stable oxide layer on the substrate surface.
摘要:
The present invention provides a conductive diamond electrode having: a conductive substrate; a coating layer formed on a surface of the conductive substrate, the coating layer containing one of a metal and an alloy each including at least one of niobium and tantalum; and a conductive diamond layer formed on a surface of the coating layer, and a process for producing the conductive diamond electrode.
摘要:
The present invention provides an oxygen-reduction gas diffusion cathode having: a porous conductive substrate; diamond particle having a hydrophobic surface; and catalyst particle, the diamond particle and the catalyst particle being disposed on the porous conductive substrate, and a method of sodium chloride electrolysis using the cathode.
摘要:
The present invention provides an oxygen-reduction gas diffusion cathode having: a porous conductive substrate; diamond particle having a hydrophobic surface; and catalyst particle, the diamond particle and the catalyst particle being disposed on the porous conductive substrate, and a method of sodium chloride electrolysis using the cathode.
摘要:
The present invention provides a conductive diamond electrode having: a conductive substrate; a coating layer formed on a surface of the conductive substrate, the coating layer containing one of a metal and an alloy each including at least one of niobium and tantalum; and a conductive diamond layer formed on a surface of the coating layer, and a process for producing the conductive diamond electrode.
摘要:
The present invention provides a method of sterilization with an electrolytic water, including: electrolyzing a raw water with an electrolytic unit including: a cathode; and an anode at least having a part containing a conductive diamond to prepare an electrolytic water; and ejecting the electrolytic water to a substance to be sterilized, and an electrolytic water ejecting apparatus.
摘要:
A conductive diamond electrode including a conductive substrate comprising a carbonaceous material, a conductive diamond catalyst layer formed on a surface of the conductive substrate, and a carbon fluoride formed on an exposed portion present on the surface of the conductive substrate. The formed carbon fluoride prevents the conductive substrate from contacting with an electrolytic solution, thereby suppressing corrosion of the substrate. A long life of the electrode can be attained.
摘要:
The present invention provides an electrode catalyst for electrochemical reaction, the electrode catalyst having: a conductive diamond particle having fine pores on a surface thereof; and a carbon-reactive catalyst metal in the fine pores, a process for producing the electrode catalyst, and an electrode.
摘要:
An industrially useful peroxo-carbonate is electrolytically produced using, as a raw material, carbon dioxide that is inexpensive and easily available. A process of producing a peroxo-carbonate, includes feeding a carbon dioxide gas into an electrolytic cell having a gas diffusion anode and a cathode, or feeding a liquid having a carbon dioxide gas dissolved therein into an electrolytic cell having an anode and a cathode, and electrolytically converting the carbon dioxide gas into a peroxo-carbonate. By properly setting up electrolytic conditions such as electrodes, a useful peroxo-carbonate can be produced with high current efficiency using inexpensive carbon dioxide as the raw material.