摘要:
A terminal plate, an insulating plate, and an end plate are stacked on a stack body. The terminal plate has current collectors at least at lower portions of an oxygen-containing gas supply passage, a coolant supply passage, a fuel gas discharge passage, a fuel gas supply passage, a coolant discharge passage, and an oxygen-containing gas discharge passage. The current collectors contact the water generated in the reaction or a coolant for collecting electricity.
摘要:
A terminal plate, an insulating plate, and an end plate are stacked on a stack body. The terminal plate has current collectors at least at lower portions of an oxygen-containing gas supply passage, a coolant supply passage, a fuel gas discharge passage, a fuel gas supply passage, a coolant discharge passage, and an oxygen-containing gas discharge passage. The current collectors contact the water generated in the reaction or a coolant for collecting electricity.
摘要:
A metallic separator for a fuel cell (and a manufacturing method therefore) can reduce damage to an electrode assembly, open up the maximum capacity of the reducing effect of contact resistance due to coating of gold by gold plating or the like, and reduce consumption of gold to lower the cost. Conductive inclusions are exposed at the surface with corrosion resistance, and at least one kind of metal or an alloy thereof selected from silver, copper, nickel, and tin is precipitated on the exposed conductive inclusions. From the viewpoint of reducing contact resistance, the conductive inclusions preferably protrude from the separator surface.
摘要:
A stacked body is formed by stacking a plurality of power generation cells in a stacking direction. End power generation cells are provided at opposite ends of the stacked body in the stacking direction. Each of the power generation cells includes a membrane electrode assembly and first and second metal separators sandwiching the membrane electrode assembly therebetween. The end power generation cells include first outer separators and second outer separators. The first outer separators are more highly hydrophilic in comparison with the first and second metal separators of the power generation cells.
摘要:
A separator for a fuel cell comprising a gold covering layer formed on the surface of stainless steel plate a method for producing a separator, in which exfoliation and fracture of the gold covering layer can be prevented and corrosion resistance and durability can be obtained, are provided. Voids are formed by intergranular corrosion treatment at a surface of the stainless steel plate, and the gold covering layer is formed so as to be embedded in the voids. Limit value of radius of curvature in bends in which exfoliations or fractures in the gold covering layer is formed can be reduced by satisfying the equation 0.2≦4/d/L≦80 wherein L(μm) is the average grain size of the surface of stainless steel plate, and d(μm) is the thickness of the gold covering layer.
摘要:
A separator for fuel cells which has a gold covering layer on the surface of a metal plate and is formed by plastic working, wherein the relationship (R+D)/R≦1.025 (50 μm≦R≦1000 μm) is satisfied assuming the minimum bending radius R at a plastic worked portion is R (μm), and the thickness of the gold covering layer is D (μm). According to the separator for fuel cells, exfoliation or cracking is prevented in the gold covering layer after plastic working, whereby corrosion resistance and durability can be remarkably improved.
摘要翻译:一种用于燃料电池的隔板,其在金属板的表面上具有金覆盖层,并且通过塑性加工形成,其中,(R + D)/ R <= 1.025(50μm<= R <=1000μm) 假设塑性加工部分的最小弯曲半径R为R(mum),金覆盖层的厚度为D(mum)。 根据燃料电池用隔板,塑料加工后的金覆盖层防止剥离或开裂,能够显着提高耐腐蚀性和耐久性。
摘要:
In the present invention, conductive inclusions which form conductive passages are exposed on a surface of a separator having corrosion resistance, and gold is selectively precipitated on the exposed conductive inclusions. From the viewpoint of contact resistance reduction, it is desirable that the conductive inclusions protrude from the surface of the separator.
摘要:
A metallic separator according to a first embodiment is formed by obtaining a blank by rolling a metallic material having conductive inclusions, and removing a surface of the blank by 2% or more of the thickness of the blank. A metallic separator according to a second embodiment is formed by pressing a metallic plate so as to have a cross section including ridges and grooves alternatively, and removing parts of the ridged portions so as to make flattened surfaces. A metallic separator having conductive inclusions in its metal texture according to a third embodiment is formed by blasting a liquid containing two or more kinds of abrasives having different particle diameters to a blank after it has been rolled. A metallic separator having conductive inclusion in its metal texture according to a fourth embodiment is formed by blasting a passivation treatment liquid mixed with abrasives to the separator.
摘要:
A press separator made of a stainless steel sheet, for providing excellent corrosion resistance and electric conductivity by a combination of a passive coating and a deposition of boride or boron carbide, restriction corrosion without separation or coming-off, by press forming, of depositions, and ensuring an extended service. A stainless steel sheet, containing 0.005-1.5 wt. %, of B and having deposited on the surface thereof at least one kind out of M23 (C, B)6 type boron carbide, and M2B type and MB type borides, is press-formed in a corrugated shape having continuous irregularities, with angles of bent portions formed by bending or unbending by press forming being set at at least 15 degrees and an outward bending R-value at up to 1 mm.
摘要:
A method for treating the surface of a stainless steel product for a fuel cell containing, in wt %, 0.15% or less of C, 17 to 36% of Cr, 0.005 to 3.5% of B, which comprises the first step of forming in advance a passive film with an oxidizing acid on the surface of the stainless steel product, the second step of allowing an aqueous acid solution to corrode the passive film, to thereby project one or more of a M23C6 type carbide, a M23(C, B)6 type borocarbide and M2B type boride, which are inclusions having good electroconductivity, the third step of forming a passive coating film with an oxidizing acid on the surface of the steel product except that of the inclusion above projected, and the fourth step of washing with water and drying. The method of treatment allows, without the use of a method requiring a high cost such as gold plating, the improvement in the contact resistance of the stainless steel product for a fuel cell, which results in the retention of excellent characteristics of a stainless steel product over a long period of time.