摘要:
A method for fabricating a seal-integrated separator for a fuel cell is presented, with which seals can be accurately positioned and the assembling time for the fuel cells may be greatly reduced. The method comprises the steps of: providing an upper mold having a groove positioned corresponding to second and fourth seals disposed on one side of a separator body, and a lower mold having a groove positioned corresponding to first and third seals disposed on the other side of the separator body; holding the separator body between the upper mold and the lower mold; and injecting melted seal material to form the seals into each of the grooves in the upper mold and the lower mold through separate gates respectively formed in the upper and lower molds. Through this method, a seal-integrated separator having the first to fourth seals which are integrated on both sides of the separator body is fabricated.
摘要:
A method for fabricating a seal-integrated separator for a fuel cell is presented, with which seals can be accurately positioned and the assembling time for the fuel cell units may be greatly reduced. The method comprises the steps of: forming a through hole in the separator body; providing a first mold having grooves respectively positioned corresponding to the inner and outer seals disposed on one side of the separator body, a connecting cavity for forming a seal bridge at least partially connecting the inner and outer seals to each other at a position corresponding to the through hole, and at least one gate communicating with each of the grooves, and a second mold having grooves respectively positioned corresponding to the inner and outer seals disposed on the other side of the separator body, and a connecting cavity for forming a seal bridge at least partially connecting the inner and outer seals to each other at a position corresponding to the through hole; holding the separator body between the first mold and the second mold; and injecting melted seal material to form the seals into each of the grooves in the first mold by supplying the melted seal material into the gate and injecting a portion of the melted seal material into each of the grooves in the second mold via the through hole. Through this method, a seal-integrated separator having first to fourth seals which are integrated on both sides of the separator body is fabricated.
摘要:
A method for fabricating a seal-integrated separator for a fuel cell is presented, with which seals can be accurately positioned and the assembling time for the fuel cell units may be greatly reduced. The method comprises the steps of: forming a through hole in the separator body; providing a first mold having grooves respectively positioned corresponding to the inner and outer seals disposed on one side of the separator body, a connecting cavity for forming a seal bridge at least partially connecting the inner and outer seals to each other at a position corresponding to the through hole, and at least one gate communicating with each of the grooves, and a second mold having grooves respectively positioned corresponding to the inner and outer seals disposed on the other side of the separator body, and a connecting cavity for forming a seal bridge at least partially connecting the inner and outer seals to each other at a position corresponding to the through hole; holding the separator body between the first mold and the second mold; and injecting melted seal material to form the seals into each of the grooves in the first mold by supplying the melted seal material into the gate and injecting a portion of the melted seal material into each of the grooves in the second mold via the through hole. Through this method, a seal-integrated separator having first to fourth seals which are integrated on both sides of the separator body is fabricated.
摘要:
A method for fabricating a seal-integrated separator for a fuel cell is presented, with which seals can be accurately positioned and the assembling time for the fuel cell units may be greatly reduced. The method comprises the steps of: forming a through hole in the separator body; providing a first mold having grooves respectively positioned corresponding to the inner and outer seals disposed on one side of the separator body, a connecting cavity for forming a seal bridge at least partially connecting the inner and outer seals to each other at a position corresponding to the through hole, and at least one gate communicating with each of the grooves, and a second mold having grooves respectively positioned corresponding to the inner and outer seals disposed on the other side of the separator body, and a connecting cavity for forming a seal bridge at least partially connecting the inner and outer seals to each other at a position corresponding to the through hole; holding the separator body between the first mold and the second mold; and injecting melted seal material to form the seals into each of the grooves in the first mold by supplying the melted seal material into the gate and injecting a portion of the melted seal material into each of the grooves in the second mold via the through hole. Through this method, a seal-integrated separator having first to fourth seals which are integrated on both sides of the separator body is fabricated.
摘要:
In a solid polymer electrolyte membrane type fuel cell of the invention, where a pair of electrodes are provided on opposite sides of a solid polymer electrolyte membrane, and the outside thereof is clamped by a pair of separators, and nonconductive picture frame-shaped members 61 are arranged at the outer edge portions of the separators, for allowing increase and decrease of a space between separators, while sealing a gap between the separators.
摘要:
In a solid polymer electrolyte membrane type fuel cell of the invention, where a pair of electrodes are provided on opposite sides of a solid polymer electrolyte membrane, and the outside thereof is clamped by a pair of separators, and nonconductive picture frame-shaped members 61 are arranged at the outer edge portions of the separators, for allowing increase and decrease of a space between separators, while sealing a gap between the separators.
摘要:
In a solid polymer electrolyte membrane type fuel cell of the invention, where a pair of electrodes are provided on opposite sides of a solid polymer electrolyte membrane, and the outside thereof is clamped by a pair of separators, and nonconductive picture frame-shaped members 61 are arranged at the outer edge portions of the separators, for allowing increase and decrease of a space between separators, while sealing a gap between the separators.
摘要:
In a solid polymer electrolyte membrane [film] type fuel cell of the invention, where a pair of electrodes are provided on opposite sides of a solid polymer electrolyte membrane [film], and the outside thereof is clamped by a pair of separators, and nonconductive picture frame-shaped members 61 are arranged at the outer edge portions of the separators, for allowing increase and decrease of a space between separators, while sealing a gap between the separators.
摘要:
An injection-molding method made up of a step of preparing a first die (41), a second die (46) and a third die (47), a step of sandwiching a separator proper (16) with the first die (41) and the second die (46), a step of molding a front side molded layer (32) by injecting silicone rubber (59) into the front side cavity (50) through a gate (52), a step of replacing the second die (46) with a third die (47) while the front side molded layer (32) is still soft, and a step of molding a rear side molded layer (34) by piercing the front side molded layer (32) with an injection pressure injecting the silicone rubber (59) through the gate (52) and filling a rear side cavity (63) with silicone rubber (59) through the through hole (30).
摘要:
A separator assembly for a fuel cell stack includes a diffusion layer including a porous metal body for diffusing and supplying fuel or oxidizer to an electrode of the fuel cell stack, and a separator including a metal plate which is disposed adjacent to the diffusion layer, and which is provided for separating the fuel and the oxidizer from each other. The diffusion layer and the separator are welded together by laser welding. Flow passage partitions of the metal forming the diffusion layer, which are formed by melting the metal by irradiation by a laser beam and by solidifying the metal, may be formed in the diffusion layer so as to define a flow passage for the fuel or oxidizer in the diffusion layer.