摘要:
An arc welding robot control system of the present invention includes memory devices, controlling devices, a welding condition changing position calculating device, a weaving operation controlling device that outputs a signal of completion of one weaving cycle every time when a welding torch completes to perform one weaving cycle of a predetermined movement pattern, a welding condition calculating device for calculating to-be-changed welding conditions, and a welding condition changing device that changes welding conditions of an arc welding robot, based on to-be-changed welding conditions, every time when a signal of completion of one weaving cycle is input. With this configuration, it enables a continuous change of welding conditions and a copying arc welding with high accuracy even in the case in which the arc welding robot performs a weaving operation.
摘要:
A robot control unit for controlling a tandem arc welding system, which has a welding torch, a robot for weaving the welding torch, a leading electrode power supply, and a trailing electrode power supply, includes a leading electrode detection section and a trailing electrode detection section for detecting quantity of welding state during weaving; a leading electrode processing section for calculating amounts of electrical change; a leading electrode correction section for calculating correction amounts for correcting displacement in horizontal and vertical directions from a weld line of a weaving center trajectory based on the amounts of electrical change; a trailing electrode processing section for calculating an amount of electrical change; and a trailing electrode correction section for calculating a correction amount for correcting displacement in a rotational direction from the weld line of the weaving center trajectory based on the amount of electrical change.
摘要:
A welding robot in which a translational correction calculating unit corrects a target value of a leading electrode using a translational correction amount, to obtain a primary correction target value. The translational correction amount is a correction amount of a position of the leading electrode in a translational direction in a base coordinate system at a next time. A rotational correction calculating unit calculates a rotation correction amount for correcting displacement of an orientation of a torch around the leading electrode with respect to a actual weld line, and calculates a secondary correction target value resulting from correcting the primary correction target value so that the torch rotates around the leading electrode by the rotation correction amount. The displacement is caused by the correction using the translational correction amount. A manipulator is driven on the basis of the secondary correction target value.
摘要:
A robot control unit for controlling a tandem arc welding system, which has a welding torch, a robot for weaving the welding torch, a leading electrode power supply, and a trailing electrode power supply, includes a leading electrode detection section and a trailing electrode detection section for detecting quantity of welding state during weaving; a leading electrode processing section for calculating amounts of electrical change; a leading electrode correction section for calculating correction amounts for correcting displacement in horizontal and vertical directions from a weld line of a weaving center trajectory based on the amounts of electrical change; a trailing electrode processing section for calculating an amount of electrical change; and a trailing electrode correction section for calculating a correction amount for correcting displacement in a rotational direction from the weld line of the weaving center trajectory based on the amount of electrical change. According to the robot control unit, arc welding can be performed, which is excellent in accuracy of arc-sensor control, and hardly produces welding defects.
摘要:
A tip-base metal distance control method is provided. In this method, actual welding currents are measured under a predetermined actual welding condition, and an average actual welding current under the actual welding condition is then calculated. From a reference-current storage table, an average welding current under a welding condition that corresponds to the actual welding condition is extracted, and the extracted current value is set as a reference current. The calculated average actual welding current is then compared with the reference current to obtain a comparison result. The position of a welding torch in an upward or a downward direction is then corrected based on the comparison result.
摘要:
The purpose of the present invention is to have the angles of each of the drive shafts of the first articulated drive system infallibly reach the angle of the work completed position, while maintaining the rate of movement and position of the working parts of an articulated robot. If exception conditions are not satisfied, the drive shafts of first and second articulation drive systems are driven individually (S64) on the basis of interpolated points calculated in step 5 (S5). After exception conditions are satisfied (Yes side of S61), until the working parts reach the work completed position (No side of S12), the angle of each of the drive shafts of the first articulated drive system required to vary each of the drive shafts of the first articulated drive system in a linear manner with the angle at the work completed position as a target is calculated (S8), and the angle of each of the drive shafts of the second articulated drive system is calculated on the basis of the position of the working part at the interpolated point calculated in step 5 (S5) and the angle of each of the drive shafts of the first articulated drive system as calculated (S9), and the drive shafts of the first and second articulated drive systems are driven according to said calculation results (S11).
摘要:
The purpose of the present invention is to have the angles of each of the drive shafts of the first articulated drive system infallibly reach the angle of the work completed position, while maintaining the rate of movement and position of the working parts of an articulated robot. If exception conditions are not satisfied, the drive shafts of first and second articulation drive systems are driven individually (S64) on the basis of interpolated points calculated in step 5 (S5). After exception conditions are satisfied (Yes side of S61), until the working parts reach the work completed position (No side of S12), the angle of each of the drive shafts of the first articulated drive system required to vary each of the drive shafts of the first articulated drive system in a linear manner with the angle at the work completed position as a target is calculated (S8), and the angle of each of the drive shafts of the second articulated drive system is calculated on the basis of the position of the working part at the interpolated point calculated in step 5 (S5) and the angle of each of the drive shafts of the first articulated drive system as calculated (S9), and the drive shafts of the first and second articulated drive systems are driven according to said calculation results (S11).
摘要:
A control device of a work positioning apparatus includes an operating limit line storage unit for storing position coordinates of an operating limit line, a speed reduction zone storage unit for storing a width of a speed reduction zone ranging from a reduction start position to the operating limit line, a check point storage unit for storing position coordinates of check points set in the work, a check point updating unit for determining position coordinates of the check points moved in accordance with an operation of the work positioning apparatus by calculation, an in-speed-reduction-zone determining unit for determining whether the check points enter the speed reduction zone in accordance with the updated position coordinates of the check points, and a work positioning apparatus control unit for instructing a work positioning apparatus motor to reduce a speed if the check points are determined to enter the speed reduction zone.
摘要:
A control device of a work positioning apparatus includes an operating limit line storage unit for storing position coordinates of an operating limit line, a speed reduction zone storage unit for storing a width of a speed reduction zone ranging from a reduction start position to the operating limit line, a check point storage unit for storing position coordinates of check points set in the work, a check point updating unit for determining position coordinates of the check points moved in accordance with an operation of the work positioning apparatus by calculation, an in-speed-reduction-zone determining unit for determining whether the check points enter the speed reduction zone in accordance with the updated position coordinates of the check points, and a work positioning apparatus control unit for instructing a work positioning apparatus motor to reduce a speed if the check points are determined to enter the speed reduction zone.