摘要:
A method for producing a Group IV semiconductor thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber, wherein the chamber further has a chamber pressure. The method further includes depositing a nanoparticle ink on the substrate, the nanoparticle ink including set of Group IV semiconductor nanoparticles and a solvent, wherein each nanoparticle of the set of Group IV semiconductor nanoparticles includes a nanoparticle surface, wherein a layer of Group IV semiconductor nanoparticles is formed. The method also includes striking a hydrogen plasma; and heating the layer of Group IV semiconductor nanoparticles to a fabrication temperature of between about 300° C. and about 1350° C., and between about 1 nanosecond and about 10 minutes; wherein the Group IV semiconductor thin film is formed.
摘要:
A method for producing a Group IV semiconductor thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber, wherein the chamber further has a chamber pressure. The method further includes depositing a nanoparticle ink on the substrate, the nanoparticle ink including set of Group IV semiconductor nanoparticles and a solvent, wherein each nanoparticle of the set of Group IV semiconductor nanoparticles includes a nanoparticle surface, wherein a layer of Group IV semiconductor nanoparticles is formed. The method also includes striking a hydrogen plasma; and heating the layer of Group IV semiconductor nanoparticles to a fabrication temperature of between about 300° C. and about 1350° C., and between about 1 nanosecond and about 10 minutes; wherein the Group IV semiconductor thin film is formed.
摘要:
A device for generating electricity from solar radiation is disclosed. The device includes a wafer doped with a first dopant, the wafer including a front-side and a back-side, wherein the front-side is configured to be exposed to the solar radiation. The device also includes a fused Group IV nanoparticle thin film deposited on the front-side, wherein the nanoparticle thin film includes a second dopant, wherein the second dopant is a counter dopant. The device further includes a first electrode deposited on the nanoparticle thin film, and a second electrode deposited on the back-side, wherein when solar radiation is applied to the front-side, an electrical current is produced.
摘要:
A device for generating electricity from solar radiation is disclosed. The device includes a wafer doped with a first dopant, the wafer including a front-side and a back-side, wherein the front-side is configured to be exposed to the solar radiation. The device also includes a fused Group IV nanoparticle thin film deposited on the front-side, wherein the nanoparticle thin film includes a second dopant, wherein the second dopant is a counter dopant. The device further includes a first electrode deposited on the nanoparticle thin film, and a second electrode deposited on the back-side, wherein when solar radiation is applied to the front-side, an electrical current is produced.
摘要:
A method of forming an epitaxial layer in a chamber is disclosed. The method includes positioning a Group IV semiconductor substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV nanoparticles and a solvent, wherein a porous compact is formed. The method also includes heating the porous compact to a temperature of between about 100° C. and about 1100° C., and for a time period of between about 5 minutes to about 60 minutes with a heating apparatus, wherein the epitaxial layer is formed.
摘要:
A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles—comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
摘要:
A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles—comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
摘要:
A silicon nanoparticle fluid including a) a set of silicon nanoparticles present in an amount of between about 1 wt % and about 20 wt % of the silicon nanoparticie fluid; b) a set of HMW binder molecules present in an amount of between about 0 wt % and about 10 wt % of the silicon nanoparticle fluid; and c) a set of capping agent molecules, such that at least some capping agent molecules are attached to the set of silicon nanoparticles. Preferably, the silicon nanoparticle fluid is a shear thinning fluid.
摘要:
A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles-comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
摘要:
Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure, for reversibly modifying nanostructures, and for manipulating the electronic properties of nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures. Ligands of the present invention are also useful for manipulating the electronic properties of nanostructure compositions (e.g., by modulating energy levels, creating internal bias fields, reducing charge transfer or leakage, etc.).