摘要:
A method for producing a Group IV semiconductor thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber, wherein the chamber further has a chamber pressure. The method further includes depositing a nanoparticle ink on the substrate, the nanoparticle ink including set of Group IV semiconductor nanoparticles and a solvent, wherein each nanoparticle of the set of Group IV semiconductor nanoparticles includes a nanoparticle surface, wherein a layer of Group IV semiconductor nanoparticles is formed. The method also includes striking a hydrogen plasma; and heating the layer of Group IV semiconductor nanoparticles to a fabrication temperature of between about 300° C. and about 1350° C., and between about 1 nanosecond and about 10 minutes; wherein the Group IV semiconductor thin film is formed.
摘要:
A method for producing a Group IV semiconductor thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber, wherein the chamber further has a chamber pressure. The method further includes depositing a nanoparticle ink on the substrate, the nanoparticle ink including set of Group IV semiconductor nanoparticles and a solvent, wherein each nanoparticle of the set of Group IV semiconductor nanoparticles includes a nanoparticle surface, wherein a layer of Group IV semiconductor nanoparticles is formed. The method also includes striking a hydrogen plasma; and heating the layer of Group IV semiconductor nanoparticles to a fabrication temperature of between about 300° C. and about 1350° C., and between about 1 nanosecond and about 10 minutes; wherein the Group IV semiconductor thin film is formed.
摘要:
A device for generating electricity from solar radiation is disclosed. The device includes a wafer doped with a first dopant, the wafer including a front-side and a back-side, wherein the front-side is configured to be exposed to the solar radiation. The device also includes a fused Group IV nanoparticle thin film deposited on the front-side, wherein the nanoparticle thin film includes a second dopant, wherein the second dopant is a counter dopant. The device further includes a first electrode deposited on the nanoparticle thin film, and a second electrode deposited on the back-side, wherein when solar radiation is applied to the front-side, an electrical current is produced.
摘要:
A device for generating electricity from solar radiation is disclosed. The device includes a wafer doped with a first dopant, the wafer including a front-side and a back-side, wherein the front-side is configured to be exposed to the solar radiation. The device also includes a fused Group IV nanoparticle thin film deposited on the front-side, wherein the nanoparticle thin film includes a second dopant, wherein the second dopant is a counter dopant. The device further includes a first electrode deposited on the nanoparticle thin film, and a second electrode deposited on the back-side, wherein when solar radiation is applied to the front-side, an electrical current is produced.
摘要:
A method of forming an epitaxial layer in a chamber is disclosed. The method includes positioning a Group IV semiconductor substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV nanoparticles and a solvent, wherein a porous compact is formed. The method also includes heating the porous compact to a temperature of between about 100° C. and about 1100° C., and for a time period of between about 5 minutes to about 60 minutes with a heating apparatus, wherein the epitaxial layer is formed.
摘要:
A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
摘要:
A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
摘要:
A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
摘要:
A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
摘要:
A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.