摘要:
In a method of electronically measuring reader/writer offset in a tape drive head, a plurality of sequentially adjacent data tracks are written on a tape with a write head. Error rate information is measured while reading a data track of the plurality of sequentially adjacent data tracks with a read head of the tape drive. A bathtub shaped curve is built from a set of the error rate information which is accumulated by reading the data track at a plurality of offsets of the read head relative to the data track. Offset of the read head relative to the write head is measured by determining an offset of the read head which correlates to a magnetic center of the data track as represented by a center point between edges of the bathtub shaped curve.
摘要:
A head rotator assembly (22) for positioning a head (20) of a tape drive (10) relative to a storage tape includes a head supporter (230) and a supporter mover assembly (232). The head supporter (230) is coupled to and supports the head (20). The supporter mover assembly (232) rotates a portion of the head supporter (230) about an axis (241) to move the head (20) in an azimuth direction relative to the storage tape as the storage tape moves over the head (20). The head rotator assembly (22) includes a controller (16) that controls movement of the supporter mover assembly (232) based on a positioning signal. The supporter mover assembly (232) can include a first actuator (234A) that moves a first lever (236A) to rotate the head supporter (230) to move the head (20) in the azimuth direction. The first actuator (234A) biases the first lever (236A) to rotate part of the head supporter (230) to move the head in the azimuth direction.
摘要:
A head rotator assembly (22) for positioning a head (20) of a tape drive (10) relative to a storage tape includes a head supporter (230) and a supporter mover assembly (232). The head supporter (230) is coupled to and supports the head (20). The supporter mover assembly (232) rotates a portion of the head supporter (230) about an axis (241) to move the head (20) in an azimuth direction relative to the storage tape as the storage tape moves over the head (20). The head rotator assembly (22) includes a controller (16) that controls movement of the supporter mover assembly (232) based on a positioning signal. The supporter mover assembly (232) can include a first actuator (234A) that moves a first lever (236A) to rotate the head supporter (230) to move the head (20) in the azimuth direction. The first actuator (234A) biases the first lever (236A) to rotate part of the head supporter (230) to move the head in the azimuth direction.
摘要:
An actuator assembly (22) for positioning a head (16) of a tape drive (10) relative to a storage tape that moves along a tape path (24) includes a first actuator (228), a second actuator (230) and a controller (26). The actuators (228, 230) move the head (16) in a direction that is substantially perpendicular to the tape path. The first actuator (228) is mounted to the second actuator (230) at a location that is based on a position of a resonance node (680) of the second actuator (230). The controller (26) controls linear positioning of the first actuator (228) and the second actuator (230) relative to the storage tape on a closed-loop basis. The actuators (228, 230) can each include voice coils (246, 260). The second actuator (230) can include two positioner guides (253A, 253B) that are configured in a substantially collinear configuration or in a triangular configuration with the head (16). The first actuator (228) can include an isolation boot (232) that decreases vibration of the first actuator (228) caused by vibration of the second actuator (230). The actuators (228, 230) can have resonance frequencies that are different from one another. The first fundamental resonance frequency can be tuned based on the second resonance frequency to decrease a correlation between the resonances of the actuators (228, 230).
摘要:
An actuator assembly (22) for positioning a head (16) of a tape drive (10) relative to a storage tape that moves along a tape path (24) includes a first actuator (228), a second actuator (230) and a controller (26). The actuators (228, 230) move the head (16) in a direction that is substantially perpendicular to the tape path. The first actuator (228) is mounted to the second actuator (230) at a location that is based on a position of a resonance node (680) of the second actuator (230). The controller (26) controls linear positioning of the first actuator (228) and the second actuator (230) relative to the storage tape on a closed-loop basis. The actuators (228, 230) can each include voice coils (246, 260). The second actuator (230) can include two positioner guides (253A, 253B) that are configured in a substantially collinear configuration or in a triangular configuration with the head (16). The first actuator (228) can include an isolation boot (232) that decreases vibration of the first actuator (228) caused by vibration of the second actuator (230). The actuators (228, 230) can have resonance frequencies that are different from one another. The first fundamental resonance frequency can be tuned based on the second resonance frequency to decrease a correlation between the resonances of the actuators (228, 230).
摘要:
In a method of multi-rate tracking with a multi-actuator servo control, a track position error is sampled at an asynchronous sample rate for operating a first actuator. The track position error is also sampled at a synchronous sample rate for operating a second actuator. The sampling from the synchronous sample rate is utilized to reduce a delay associated with the sampling at the asynchronous sample rate.
摘要:
A tape drive (232) that receives a tape cartridge (42) having a tape (256) comprises a tape head (280) and a control system (270). The tape head (280) transfers data between the tape drive (232) and the tape (256). The control system (270) utilizes linear parameterization to control the position of the tape head (280) relative to the tape (256). The control system (270) can include a compensator (J) and a filter (Q). The compensator (J) is a combination of the information contained in a nominal control system (370A) and the information contained in a model of the servo system (370B). The model of the servo system (370B) estimates system disturbances that affect the tracking ability of the control system (270). The filter (Q) filters the estimated system disturbances to generate a filtered system disturbance signal. The filtered system disturbance signal is then used to adjust the output of the compensator (J). Additionally, the control system (270) can utilize Youla-Kucera parameterization to control the position of the tape head (280) relative to the tape (256). Further, the control system (270) controls the position of the tape head (280) relative to the tape (256) without the use of a feed-forward sensor.
摘要:
A tape drive (232) that receives a tape cartridge (42) having a tape (256) comprises a tape head (280) and a control system (270). The tape head (280) transfers data between the tape drive (232) and the tape (256). The control system (270) utilizes linear parameterization to control the position of the tape head (280) relative to the tape (256). The control system (270) can include a compensator (J) and a filter (Q). The compensator (J) is a combination of the information contained in a nominal control system (370A) and the information contained in a model of the servo system (370B). The model of the servo system (370B) estimates system disturbances that affect the tracking ability of the control system (270). The filter (Q) filters the estimated system disturbances to generate a filtered system disturbance signal. The filtered system disturbance signal is then used to adjust the output of the compensator (J). Additionally, the control system (270) can utilize Youla-Kucera parameterization to control the position of the tape head (280) relative to the tape (256). Further, the control system (270) controls the position of the tape head (280) relative to the tape (256) without the use of a feed-forward sensor.