摘要:
An engine exhaust after-treatment system is provided, which may include a particulate trap configured to remove at least some constituents of the exhaust flowing from an engine through an exhaust system. The system may also include a controller configured to collect in-service data related to an operating parameter indicative of the amount of time the engine operates. In addition, the system may include a memory device attached to the particulate trap and including a memory. The memory may be configured to store usage data indicative of how much time the particulate trap has been used in service. The memory may be configured to communicate with the controller to receive information related to the in-service data collected by the controller and update the usage data in the memory, based on the communication with the controller, to reflect a total amount of time the particulate trap has been in service.
摘要:
An engine exhaust after-treatment system is provided, which may include a particulate trap configured to remove at least some constituents of the exhaust flowing from an engine through an exhaust system. The system may also include a controller configured to collect in-service data related to an operating parameter indicative of the amount of time the engine operates. In addition, the system may include a memory device attached to the particulate trap and including a memory. The memory may be configured to store usage data indicative of how much time the particulate trap has been used in service. The memory may be configured to communicate with the controller to receive information related to the in-service data collected by the controller and update the usage data in the memory, based on the communication with the controller, to reflect a total amount of time the particulate trap has been in service.
摘要:
A control system for an engine having a combustion chamber is disclosed. The control system has a first sensor, a second sensor, and a third sensor. The first sensor generates a signal indicative of ambient air pressure. The second sensor generates a signal indicative of the pressure of air entering the combustion chamber. The third sensor generates a signal indicative of a speed of the engine. The control system also has a controller configured to reference a first map to determine a first fuel limit value based on the pressure of air entering the combustion chamber and the speed of the engine, reference a second map to determine a second fuel limit value based on the pressure of air entering the combustion chamber and the speed of the engine, and determine a third fuel limit value based on the first and second fuel limit values and the ambient air pressure.
摘要:
An exhaust system is disclosed. The exhaust system has a first sensor disposed to sense a first temperature of an exhaust flow and a second sensor disposed to sense a second temperature of the exhaust flow. The exhaust system also has a controller in communication to receive from the first and second sensors signals indicative of the first and second temperatures. The controller is configured to compare the signals indicative of the first and second temperatures during exhaust system thermal equilibrium, to determine whether at least one of the signals indicative of the first and second temperatures is inaccurate based on the comparison, and to affect a system reaction if it is determined that at least one of the signals indicative of the first and second temperatures is inaccurate.
摘要:
An exhaust system is disclosed. The exhaust system has a first sensor disposed to sense a first temperature of an exhaust flow and a second sensor disposed to sense a second temperature of the exhaust flow. The exhaust system also has a controller in communication to receive from the first and second sensors signals indicative of the first and second temperatures. The controller is configured to compare the signals indicative of the first and second temperatures during exhaust system thermal equilibrium, to determine whether at least one of the signals indicative of the first and second temperatures is inaccurate based on the comparison, and to affect a system reaction if it is determined that at least one of the signals indicative of the first and second temperatures is inaccurate.
摘要:
A particulate trap regeneration system is provided. The system may include a particulate trap configured to remove one or more types of particulate matter from an exhaust flow of an engine. The system may also include a regeneration device configured to reduce an amount of particulate matter in the particulate trap. The system may further include a controller configured to activate the regeneration device in response to the first to occur of at least three trigger conditions.
摘要:
A control system for estimating the performance of a compressor is disclosed. The control system has a compressor fluidly connected to an inlet manifold of a power source. The control system also has a power source speed sensor to provide an indication of a rotational speed of the power source, an inlet pressure sensor to provide an indication of a pressure of a fluid within the inlet manifold, an inlet temperature sensor to provide an indication of a temperature of the fluid within the inlet manifold, an atmospheric pressure sensor to provide an indication of an atmospheric pressure, and a control module in communication with each of the sensors. The control module is configured to monitor an engine valve opening duration and an exhaust gas recirculation valve position, and estimate a compressor inlet pressure based on the provided indications, the monitored duration, and the monitored position.
摘要:
Apparatuses and methods for regenerating a particulate filter. A first temperature corresponding to a temperature of a catalyst that is thermally coupled with a particulate filter is determined. A second temperature corresponding to the temperature of the particulate filter is determined. Substantially no unburned hydrocarbons are delivered to the catalyst when the first temperature is below a first threshold and unburned hydrocarbons are delivered to the catalyst when the first temperature is above the first threshold and the second temperature is below a second threshold.