Methods and apparatus for retinal imaging

    公开(公告)号:US09295388B2

    公开(公告)日:2016-03-29

    申请号:US14214950

    申请日:2014-03-16

    摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.

    Methods and Apparatus for Retinal Imaging
    2.
    发明申请
    Methods and Apparatus for Retinal Imaging 有权
    视网膜成像方法与装置

    公开(公告)号:US20140226128A1

    公开(公告)日:2014-08-14

    申请号:US14214950

    申请日:2014-03-16

    IPC分类号: A61B3/14 A61B3/00

    摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.

    摘要翻译: 在示例性实施方式中,本发明包括用于视网膜自我成像的装置。 视觉刺激帮助用户用相机自行调整眼睛。 双眼耦合引起测试眼旋转到不同的位置。 当测试眼旋转时,捕获视网膜的不同区域的视频。 计算摄影方法将该视频处理成视网膜大面积的马赛克图像。 LED被压在眼睛附近的皮肤上,以提供视网膜的间接的漫射照明。 相机具有宽视野,即使眼睛离轴(眼睛的瞳孔轴和相机的光轴未对齐),也可以对视网膜的一部分进行成像。 或者,视网膜直接通过瞳孔照射,并且使用大透镜的不同部分来对视网膜的不同部分进行成像。 或者,全视相机用于视网膜成像。

    Methods and Apparatus for Retinal Imaging
    3.
    发明申请
    Methods and Apparatus for Retinal Imaging 有权
    视网膜成像方法与装置

    公开(公告)号:US20130208241A1

    公开(公告)日:2013-08-15

    申请号:US13766751

    申请日:2013-02-13

    IPC分类号: A61B3/14

    摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.

    摘要翻译: 在示例性实施方式中,本发明包括用于视网膜自我成像的装置。 视觉刺激帮助用户用相机自行调整眼睛。 双眼耦合引起测试眼旋转到不同的位置。 当测试眼旋转时,捕获视网膜的不同区域的视频。 计算摄影方法将该视频处理成视网膜大面积的马赛克图像。 LED被压在眼睛附近的皮肤上,以提供视网膜的间接的漫射照明。 相机具有宽视野,即使眼睛离轴(眼睛的瞳孔轴和相机的光轴未对齐),也可以对视网膜的一部分进行成像。 或者,视网膜直接通过瞳孔照射,并且使用大透镜的不同部分来对视网膜的不同部分进行成像。 或者,全视相机用于视网膜成像。

    Methods and apparatus for retinal imaging
    4.
    发明授权
    Methods and apparatus for retinal imaging 有权
    视网膜成像的方法和装置

    公开(公告)号:US09060718B2

    公开(公告)日:2015-06-23

    申请号:US13766751

    申请日:2013-02-13

    IPC分类号: A61B3/14 A61B3/00 A61B3/12

    摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.

    摘要翻译: 在示例性实施方式中,本发明包括用于视网膜自我成像的装置。 视觉刺激帮助用户用相机自行调整眼睛。 双眼耦合引起测试眼旋转到不同的位置。 当测试眼旋转时,捕获视网膜的不同区域的视频。 计算摄影方法将该视频处理成视网膜大面积的马赛克图像。 LED被压在眼睛附近的皮肤上,以提供视网膜的间接的漫射照明。 相机具有宽视野,即使眼睛离轴(眼睛的瞳孔轴和相机的光轴未对齐),也可以对视网膜的一部分进行成像。 或者,视网膜直接通过瞳孔照射,并且使用大透镜的不同部分来对视网膜的不同部分进行成像。 或者,全视相机用于视网膜成像。