-
公开(公告)号:US09060718B2
公开(公告)日:2015-06-23
申请号:US13766751
申请日:2013-02-13
CPC分类号: A61B3/14 , A61B3/0025 , A61B3/0091 , A61B3/12 , G06K9/00604
摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
摘要翻译: 在示例性实施方式中,本发明包括用于视网膜自我成像的装置。 视觉刺激帮助用户用相机自行调整眼睛。 双眼耦合引起测试眼旋转到不同的位置。 当测试眼旋转时,捕获视网膜的不同区域的视频。 计算摄影方法将该视频处理成视网膜大面积的马赛克图像。 LED被压在眼睛附近的皮肤上,以提供视网膜的间接的漫射照明。 相机具有宽视野,即使眼睛离轴(眼睛的瞳孔轴和相机的光轴未对齐),也可以对视网膜的一部分进行成像。 或者,视网膜直接通过瞳孔照射,并且使用大透镜的不同部分来对视网膜的不同部分进行成像。 或者,全视相机用于视网膜成像。
-
公开(公告)号:US20130208241A1
公开(公告)日:2013-08-15
申请号:US13766751
申请日:2013-02-13
IPC分类号: A61B3/14
CPC分类号: A61B3/14 , A61B3/0025 , A61B3/0091 , A61B3/12 , G06K9/00604
摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
摘要翻译: 在示例性实施方式中,本发明包括用于视网膜自我成像的装置。 视觉刺激帮助用户用相机自行调整眼睛。 双眼耦合引起测试眼旋转到不同的位置。 当测试眼旋转时,捕获视网膜的不同区域的视频。 计算摄影方法将该视频处理成视网膜大面积的马赛克图像。 LED被压在眼睛附近的皮肤上,以提供视网膜的间接的漫射照明。 相机具有宽视野,即使眼睛离轴(眼睛的瞳孔轴和相机的光轴未对齐),也可以对视网膜的一部分进行成像。 或者,视网膜直接通过瞳孔照射,并且使用大透镜的不同部分来对视网膜的不同部分进行成像。 或者,全视相机用于视网膜成像。
-
公开(公告)号:US20140226128A1
公开(公告)日:2014-08-14
申请号:US14214950
申请日:2014-03-16
CPC分类号: A61B3/14 , A61B3/0025 , A61B3/0091 , A61B3/12 , G06K9/00604
摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
摘要翻译: 在示例性实施方式中,本发明包括用于视网膜自我成像的装置。 视觉刺激帮助用户用相机自行调整眼睛。 双眼耦合引起测试眼旋转到不同的位置。 当测试眼旋转时,捕获视网膜的不同区域的视频。 计算摄影方法将该视频处理成视网膜大面积的马赛克图像。 LED被压在眼睛附近的皮肤上,以提供视网膜的间接的漫射照明。 相机具有宽视野,即使眼睛离轴(眼睛的瞳孔轴和相机的光轴未对齐),也可以对视网膜的一部分进行成像。 或者,视网膜直接通过瞳孔照射,并且使用大透镜的不同部分来对视网膜的不同部分进行成像。 或者,全视相机用于视网膜成像。
-
公开(公告)号:US09295388B2
公开(公告)日:2016-03-29
申请号:US14214950
申请日:2014-03-16
CPC分类号: A61B3/14 , A61B3/0025 , A61B3/0091 , A61B3/12 , G06K9/00604
摘要: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
-
公开(公告)号:US09451141B2
公开(公告)日:2016-09-20
申请号:US14690159
申请日:2015-04-17
申请人: Achuta Kadambi , Ayush Bhandari , Ramesh Raskar
发明人: Achuta Kadambi , Ayush Bhandari , Ramesh Raskar
CPC分类号: H04N5/2256 , G01S7/4815 , G01S17/89 , G06T2207/10028 , H04N5/2226
摘要: In illustrative implementations of this invention, an imaging system includes multiple light sources that illuminate a scene, and also includes a lock-in time of flight camera. While the scene is illuminated by these light sources, each of the light sources is amplitude-modulated by a different modulation pattern, and a reference signal is applied to the lock-in time-of-flight camera. The modulation patterns and the reference signal are carefully chosen such that the imaging system is able to disentangle, in real time, the respective contributions of the different light sources, and to compute, in real-time, depth of the scene. In some cases, the modulation signals for the light sources are orthogonal to each other and the reference signal is broadband. In some cases, the modulation codes for the light sources and the reference code are optimal codes that are determined by an optimization algorithm.
摘要翻译: 在本发明的说明性实现中,成像系统包括照亮场景的多个光源,并且还包括飞行时间相机的锁定时间。 当这些光源照亮场景时,每个光源被不同的调制模式进行幅度调制,并且将参考信号应用于锁定飞行时间相机。 仔细选择调制图案和参考信号,使得成像系统能够实时地解析不同光源的相应贡献,并且实时地计算场景的深度。 在某些情况下,光源的调制信号彼此正交,参考信号是宽带的。 在某些情况下,光源的调制码和参考码是由优化算法确定的最佳码。
-
公开(公告)号:US09380221B2
公开(公告)日:2016-06-28
申请号:US14192800
申请日:2014-02-27
申请人: Kshitij Marwah , Gordon Wetzstein , Ramesh Raskar
发明人: Kshitij Marwah , Gordon Wetzstein , Ramesh Raskar
CPC分类号: H04N5/2621 , H04N5/2254
摘要: In exemplary implementations of this invention, a light field camera uses a light field dictionary to reconstruct a 4D light field from a single photograph. The light field includes both angular and spatial information and has a spatial resolution equal to the spatial resolution of the imaging sensor. Light from a scene passes through a coded spatial light modulator (SLM) before reaching an imaging sensor. Computer processors reconstruct a light field. This reconstruction includes computing a sparse or compressible coefficient vector using a light field dictionary matrix. Each column vector of the dictionary matrix is a light field atom. These light field atoms each, respectively, comprise information about a small 4D region of a light field. Reconstruction quality may be improved by using an SLM that is as orthogonal as possible to the dictionary.
摘要翻译: 在本发明的示例性实施方案中,光场照相机使用光场辞典从单张照片重建4D光场。 光场包括角度和空间信息,并且具有等于成像传感器的空间分辨率的空间分辨率。 来自场景的光在到达成像传感器之前通过编码的空间光调制器(SLM)。 计算机处理器重建光场。 该重建包括使用光场字典矩阵来计算稀疏或可压缩的系数向量。 字典矩阵的每个列向量都是一个光场原子。 这些光场原子各自分别包括关于光场的小4D区域的信息。 可以通过使用与字典尽可能正交的SLM来改善重建质量。
-
公开(公告)号:US20160014393A1
公开(公告)日:2016-01-14
申请号:US14795113
申请日:2015-07-09
申请人: Achuta Kadambi , Hang Zhao , Boxin Shi , Ayush Bhandari , Ramesh Raskar
发明人: Achuta Kadambi , Hang Zhao , Boxin Shi , Ayush Bhandari , Ramesh Raskar
CPC分类号: G01S17/89 , G01S17/003 , G01S17/46
摘要: A time-of-flight camera images an object around a corner or through a diffuser. In the case of imaging around a corner, light from a hidden target object reflects off a diffuse surface and travels to the camera. Points on the diffuse surface function as a virtual sensors. In the case of imaging through a diffuser, light from the target object is transmitted through a diffusive media and travels to the camera. Points on a surface of the diffuse media that is visible to the camera function as virtual sensors. In both cases, a computer represents phase and intensity measurements taken by the camera as a system of linear equations and solves a linear inverse problem to (i) recover an image of the target object; or (ii) to compute a 3D position for each point in a set of points on an exterior surface of the target object.
摘要翻译: 飞行时间相机在拐角处或通过扩散器拍摄物体。 在围绕角落成像的情况下,来自隐藏的目标物体的光从漫射表面反射并行进到照相机。 漫反射面上的点作为虚拟传感器。 在通过漫射器进行成像的情况下,来自目标物体的光通过漫射介质传播并传播到照相机。 相机可见的漫射介质表面上的点作为虚拟传感器。 在这两种情况下,计算机表示作为线性方程组的相机拍摄的相位和强度测量值,并解决了线性反问题(i)恢复目标对象的图像; 或(ii)计算目标对象的外表面上的一组点中的每个点的3D位置。
-
公开(公告)号:US20150330905A1
公开(公告)日:2015-11-19
申请号:US14677898
申请日:2015-04-02
申请人: Munehiko Sato , Ramesh Raskar , Boxin Shi , Alex Olwal
发明人: Munehiko Sato , Ramesh Raskar , Boxin Shi , Alex Olwal
IPC分类号: G01N21/84
CPC分类号: G01N21/84 , G01N21/251 , G01N21/255 , G01N21/474 , G01N2021/3155 , G01N2021/3181 , G01N2021/479 , G01N2021/8444 , G01N2201/06113 , G01N2201/0612 , G01N2201/062 , G01N2201/0627 , G01N2201/12
摘要: In illustrative implementations of this invention, light sources illuminate a surface with multi-spectral, multi-directional illumination that varies in direction, wavelength, coherence and collimation. One or more cameras capture images of the surface while the surface is illuminated under different lighting conditions. One or more computers take, as input, data indicative of or derived from the images, and determine a classification of the surface. Based on the computed classification, the computers output signals to control an I/O device, such that content displayed by the I/O device depends, at least in part, on the computed classification. In illustrative implementations, this invention accurately classifies a wide range of surfaces, including transparent surfaces, specular surfaces, and surfaces with few features.
摘要翻译: 在本发明的说明性实施中,光源照射具有在方向,波长,相干和准直上变化的多光谱多方向照明的表面。 一个或多个照相机在表面在不同的照明条件下照明时捕获表面的图像。 一个或多个计算机作为输入,取代指示或从图像导出的数据,并且确定表面的分类。 基于所计算的分类,计算机输出信号以控制I / O设备,使得由I / O设备显示的内容至少部分地依赖于所计算的分类。 在说明性实施方式中,本发明可精确地分类宽范围的表面,包括透明表面,镜面和具有很少特征的表面。
-
公开(公告)号:US20150304534A1
公开(公告)日:2015-10-22
申请号:US14690159
申请日:2015-04-17
申请人: Achuta Kadambi , Ayush Bhandari , Ramesh Raskar
发明人: Achuta Kadambi , Ayush Bhandari , Ramesh Raskar
CPC分类号: H04N5/2256 , G01S7/4815 , G01S17/89 , G06T2207/10028 , H04N5/2226
摘要: In illustrative implementations of this invention, an imaging system includes multiple light sources that illuminate a scene, and also includes a lock-in time of flight camera. While the scene is illuminated by these light sources, each of the light sources is amplitude-modulated by a different modulation pattern, and a reference signal is applied to the lock-in time-of-flight camera. The modulation patterns and the reference signal are carefully chosen such that the imaging system is able to disentangle, in real time, the respective contributions of the different light sources, and to compute, in real-time, depth of the scene. In some cases, the modulation signals for the light sources are orthogonal to each other and the reference signal is broadband. In some cases, the modulation codes for the light sources and the reference code are optimal codes that are determined by an optimization algorithm.
摘要翻译: 在本发明的说明性实现中,成像系统包括照亮场景的多个光源,并且还包括飞行时间相机的锁定时间。 当这些光源照亮场景时,每个光源被不同的调制模式进行幅度调制,并且将参考信号应用于锁定飞行时间相机。 仔细选择调制图案和参考信号,使得成像系统能够实时地解析不同光源的相应贡献,并且实时地计算场景的深度。 在某些情况下,光源的调制信号彼此正交,参考信号是宽带的。 在某些情况下,光源的调制码和参考码是由优化算法确定的最佳码。
-
公开(公告)号:US20140347676A1
公开(公告)日:2014-11-27
申请号:US14287811
申请日:2014-05-27
申请人: Andreas Velten , Ramesh Raskar
发明人: Andreas Velten , Ramesh Raskar
CPC分类号: G01B11/002 , G01B11/2513 , G01J3/021 , G01J3/027 , G01J3/10 , G01J3/42 , G01N21/255 , G01N21/27 , G01N21/55 , G01N21/64 , G01N21/6456 , G01N2021/3129 , G01N2021/6417 , G01N2201/061
摘要: An active imaging system, which includes a light source and light sensor, generates structured illumination. The light sensor captures transient light response data regarding reflections of light emitted by the light source. The transient light response data is wavelength-resolved. One or more processors process the transient light response data and data regarding the structured illumination to calculate a reflectance spectra map of an occluded surface. The processors also compute a 3D geometry of the occluded surface.
摘要翻译: 包括光源和光传感器的主动成像系统产生结构化照明。 光传感器捕获关于光源发射的光的反射的瞬态光响应数据。 瞬态光响应数据经波长分辨。 一个或多个处理器处理关于结构化照明的瞬态光响应数据和数据,以计算遮挡表面的反射光谱图。 处理器还计算封闭表面的3D几何形状。
-
-
-
-
-
-
-
-
-