摘要:
Provided herein are isolated nucleic acid molecules representing a genetically defined region of the genome of the aphid resistant soybean plant (Glycine max) cultivar Dowling that confers resistance to soybean aphid (Aphis glycines). Within the region is a gene encoding the aphid resistance protein Rag1. Rag1 aphid resistance amino acid sequences are also provided. Also provided herein are methods for conferring aphid resistance on a plant or enhancing aphid resistance in a plant by transforming it to contain and express such nucleic acid sequences encoding Rag1 aphid resistance or introgressing DNA encoding the trait into the plant by plant breeding. Further provided are polymorphic markers useful for identifying plant germplasm containing aphid resistance, and methods for makings such markers.
摘要:
Methods of increasing the resistance of plants, in particular soybeans, to nematodes, in particular soybean cyst nematodes, are provided herein. The methods include increasing the expression of Glyma18g02580, Glyma18g02590 and/or Glyma18g2610 in cells of a plant and in particular in root cells of a plant to increase the resistance of the plant and plant cells to nematodes. The methods include increasing the expression using constitutive promoters or by increasing the copy number of the polynucleotides. Constructs for expressing these polypeptides, transgenic cells, transgenic plants and methods of generating the same are also provided. Methods of screening plant cells for resistance or susceptibility to nematodes are also provided.
摘要:
The present invention relates generally to medical devices with therapy eluting components and methods for making same. More specifically, the invention relates to implantable medical devices having at least one porous layer, and methods for making such devices, and loading such devices with therapeutic agents. A mixture or alloy is placed on the surface of a medical device, then one component of the mixture or alloy is generally removed without generally removing the other components of the mixture or alloy.
摘要:
The present invention relates generally to medical devices with therapy eluting components and methods for making same. More specifically, the invention relates to implantable medical devices having at least one porous layer, and methods for making such devices, and loading such devices with therapeutic agents. A mixture or alloy is placed on the surface of a medical device, then one component of the mixture or alloy is generally removed without generally removing the other components of the mixture or alloy. In some embodiments, a porous layer is adapted for bonding non-metallic coating, including drug eluting polymeric coatings. A porous layer may have a random pore structure or an oriented or directional grain porous structure. One embodiment of the invention relates to medical devices, including vascular stents, having at least one porous layer adapted to resist stenosis or cellular proliferation without requiring elution of therapeutic agents. The invention also includes methods, devices, and specifications for loading of drugs and other therapeutic agents into nanoporous coatings.
摘要:
The present invention relates generally to medical devices with therapy eluting components and methods for making same. More specifically, the invention relates to implantable medical devices having at least one porous layer, and methods for making such devices, and loading such devices with therapeutic agents. A mixture or alloy is placed on the surface of a medical device, then one component of the mixture or alloy is generally removed without generally removing the other components of the mixture or alloy. In some embodiments, a porous layer is adapted for bonding non-metallic coating, including drug eluting polymeric coatings. A porous layer may have a random pore structure or an oriented or directional grain porous structure. One embodiment of the invention relates to medical devices, including vascular stents, having at least one porous layer adapted to resist stenosis or cellular proliferation without requiring elution of therapeutic agents. The invention also includes methods, devices, and specifications for loading of drugs and other therapeutic agents into nanoporous coatings.
摘要:
The present invention relates generally to medical devices with therapy eluting components and methods for making same. More specifically, the invention relates to implantable medical devices having at least one porous layer, and methods for making such devices, and loading such devices with therapeutic agents. A mixture or alloy is placed on the surface of a medical device, then one component of the mixture or alloy is generally removed without generally removing the other components of the mixture or alloy. In some embodiments, a porous layer is adapted for bonding non-metallic coating, including drug eluting polymeric coatings. A porous layer may have a random pore structure or an oriented or directional grain porous structure. One embodiment of the invention relates to medical devices, including vascular stents, having at least one porous layer adapted to resist stenosis or cellular proliferation without requiring elution of therapeutic agents. The invention also includes methods, devices, and specifications for loading of drugs and other therapeutic agents into nanoporous coatings.
摘要:
The present invention relates generally to medical devices with therapy eluting components and methods for making same. More specifically, the invention relates to implantable medical devices having at least one porous layer, and methods for making such devices, and loading such devices with therapeutic agents. A mixture or alloy is placed on the surface of a medical device, then one component of the mixture or alloy is generally removed without generally removing the other components of the mixture or alloy. In some embodiments, a porous layer is adapted for bonding non-metallic coating, including drug eluting polymeric coatings. A porous layer may have a random pore structure or an oriented or directional grain porous structure. One embodiment of the invention relates to medical devices, including vascular stents, having at least one porous layer adapted to resist stenosis or cellular proliferation without requiring elution of therapeutic agents. The invention also includes methods, devices, and specifications for loading of drugs and other therapeutic agents into nanoporous coatings.
摘要:
The present invention relates generally to medical devices with therapy eluting components and methods for making same. More specifically, the invention relates to implantable medical devices having at least one porous layer, and methods for making such devices, and loading such devices with therapeutic agents. A mixture or alloy is placed on the surface of a medical device, then one component of the mixture or alloy is generally removed without generally removing the other components of the mixture or alloy. In some embodiments, a porous layer is adapted for bonding non-metallic coating, including drug eluting polymeric coatings. A porous layer may have a random pore structure or an oriented or directional grain porous structure. One embodiment of the invention relates to medical devices, including vascular stents, having at least one porous layer adapted to resist stenosis or cellular proliferation without requiring elution of therapeutic agents. The invention also includes methods, devices, and specifications for loading of drugs and other therapeutic agents into nanoporous coatings.
摘要:
The present invention relates generally to medical devices containing nanoporous surfaces and methods for making same. More specifically, the invention relates to implantable vascular stents or other biomedical devices having at least one dealloyed nanoporous layer that promotes improved cellular adhesion properties that promote healing and long term biocompatibility. In the case of stents, the nanoporous layer promotes re-endothelialization at sites of stent implantation vasculature, improves overall healing, and reduces inflammation and intimal disease progression. The nanoporous layer may be optionally loaded with one or more therapeutic agent to further improve the function of the implanted stent and further augment clinical efficacy.
摘要:
The present invention relates generally to medical devices containing nanoporous surfaces and methods for making same. More specifically, the invention relates to implantable vascular stents or other biomedical devices having at least one nanoporous layer that promotes improved cellular adhesion properties that promote healing and long term biocompatibility. In the case of stents, the nanoporous layer promotes re-endothelialization at sites of stent implantation vasculature, improves overall healing, and reduces inflammation and intimal disease progression. The nanoporous layer may be optionally loaded with one or more therapeutic agent to further improve the function of the implanted stent and further augment clinical efficacy.