摘要:
Predictive modeling of consumer financial behavior, including determination of likely responses to particular marketing efforts, is provided by application of consumer transaction data to predictive models associated with merchant segments. The merchant segments are derived from the consumer transaction data based on co-occurrences of merchants in sequences of transactions. Merchant vectors represent specific merchants, and are aligned in a vector space as a function of the degree to which the merchants co-occur more or less frequently than expected. Supervised segmentation is applied to merchant vectors to form the merchant segments. Merchant segment predictive models provide predictions of spending in each merchant segment for any particular consumer, based on previous spending by the consumer. Consumer profiles describe summary statistics of each consumer's spending in the merchant segments, and across merchant segments. The consumer profiles include consumer vectors derived as summary vectors of selected merchants patronized by the consumer. Predictions of consumer behavior are made by applying nearest-neighbor analysis to consumer vectors, thus facilitating the targeting of promotional offers to consumers most likely to respond positively.
摘要:
Predictive modeling of consumer financial behavior, including determination of likely responses to particular marketing efforts, is provided by application of consumer transaction data to predictive models associated with merchant segments. The merchant segments are derived from the consumer transaction data based on co-occurrences of merchants in sequences of transactions. Merchant vectors represent specific merchants, and are aligned in a vector space as a function of the degree to which the merchants co-occur more or less frequently than expected. Supervised segmentation is applied to merchant vectors to form the merchant segments. Merchant segment predictive models provide predictions of spending in each merchant segment for any particular consumer, based on previous spending by the consumer. Consumer profiles describe summary statistics of each consumer's spending in the merchant segments, and across merchant segments. The consumer profiles include consumer vectors derived as summary vectors of selected merchants patronized by the consumer. Predictions of consumer behavior are made by applying nearest-neighbor analysis to consumer vectors, thus facilitating the targeting of promotional offers to consumers most likely to respond positively.
摘要:
Predictive modeling of consumer financial behavior, including determination of likely responses to particular marketing efforts, is provided by application of consumer transaction data to predictive models associated with merchant segments. The merchant segments are derived from the consumer transaction data based on co-occurrences of merchants in sequences of transactions. Merchant vectors represent specific merchants, and are aligned in a vector space as a function of the degree to which the merchants co-occur more or less frequently than expected. Consumer vectors are developed within the vector space, to represent interests of particular consumers by virtue of relative vector positions of consumer and merchant vectors. Various techniques, including clustering, supervised segmentation, and nearest-neighbor analysis, are applied separately or in combination to generate improved predictions of consumer behavior.
摘要:
Predictive modeling of consumer financial behavior, including determination of likely responses to particular marketing efforts, is provided by application of consumer transaction data to predictive models associated with merchant segments, which are derived from the consumer transaction data based on co-occurrences of merchants in sequences of transactions. Merchant vectors represent specific merchants, and are aligned in a vector space as a function of the degree to which the merchants co-occur. Supervised segmentation is applied to merchant vectors to form merchant segments. Merchant segment predictive models provide predictions of spending in each merchant segment for any particular consumer, based on previous spending by the consumer. Consumer profiles describe summary statistics of each consumer's spending in the merchant segments, and across merchant segments. Consumer profiles include consumer vectors derived as summary vectors of selected merchants patronized by the consumer. Predictions of consumer behavior are made by applying nearest-neighbor analysis to consumer vectors.
摘要:
Predictive modeling of consumer financial behavior is provided by application of consumer transaction data to predictive models associated with merchant segments. Merchant segments are derived from consumer transaction data based on co-occurrences of merchants in sequences of transactions. Merchant vectors representing specific merchants are clustered to form merchant segments in a vector space as a function of the degree to which merchants co-occur more or less frequently than expected. Each merchant segment is trained using consumer transaction data in selected past time periods to predict spending in subsequent time periods for a consumer based on previous spending by the consumer. Consumer profiles describe summary statistics of consumer spending in and across merchant segments. Analysis of consumers associated with a segment identifies selected consumers according to predicted spending in the segment or other criteria, and the targeting of promotional offers specific to the segment and its merchants.
摘要:
A system and method for selecting and presenting personally targeted entities such as advertising, coupons, products and information content, based on tracking observed behavior on a user-by-user basis and utilizing an adaptive vector space representation for both information and behavior. The system matches users to entities in a manner that improves with increased operation and observation of user behavior. User behavior and entities (ads, coupons, products) and information (text) are all represented as content vectors in a unified vector space. The system is based on an information representation called content vectors that utilizes a constrained self organization learning technique to learn the relationships between symbols (typically words in unstructured text). Users and entities are each represented as content vectors.
摘要:
A system and method for protecting identity fraud are disclosed. A system includes a detection subsystem to identify applications and/or accounts at risk of identity fraud, and a disposition subsystem to process data provided by the detection system and to determine whether identity fraud exists in the applications and/or accounts. According to an implementation, one or more neural network models are defined, each neural network model being configured to handle a class of cases related to the subject and a specific data configuration describing a case of the class. The one or more neural network models are run to generate data requests about the subject's identity, and the data requests are passed to a detection system that monitor transactions associated with the subject. Additional data associated with the transactions is requested until a threshold certainty is achieved or until available data or models are exhausted.
摘要:
An automated system and method detects fraudulent transactions using a predictive model such as a neural network to evaluate individual customer accounts and identify potentially fraudulent transactions based on learned relationships among known variables. The system may also output reason codes indicating relative contributions of various variables to a particular result. The system periodically monitors its performance and redevelops the model when performance drops below a predetermined level.
摘要:
A system and method for protecting identity fraud are disclosed. A system includes a detection subsystem to identify applications and/or accounts at risk of identity fraud, and a disposition subsystem to process data provided by the detection system and to determine whether identity fraud exists in the applications and/or accounts. According to an implementation, one or more neural network models are defined, each neural network model being configured to handle a class of cases related to the subject and a specific data configuration describing a case of the class. The one or more neural network models are run to generate data requests about the subject's identity, and the data requests are passed to a detection system that monitor transactions associated with the subject. Additional data associated with the transactions is requested until a threshold certainty is achieved or until available data or models are exhausted.
摘要:
An automated system and method detects fraudulent transactions using a predictive model such as a neural network to evaluate individual customer accounts and identify potentially fraudulent transactions based on learned relationships among known variables. The system may also output reason codes indicating relative contributions of various variables to a particular result. The system periodically monitors its performance and redevelops the model when performance drops below a predetermined level.