摘要:
The invention relates to a method and a device for the combined representation of a series of 2D fluoroscopic images of the beating heart with a static 3D image data set of the same heart. The fluoroscopic images are registered with the 3D image data set and from this a 2D pseudo-projection on to the image plane of each fluoroscopic image generated in each case. This is then represented with the associated fluoroscopic image overlaid. The method is characterized in that the pseudo-projection is represented differently in each case or is not represented depending on the interval of the cardiac phase of the currently represented fluoroscopic image relative to the cardiac phase of the 3D image data set.
摘要:
The invention relates to a method and a device for the combined representation of a series of 2D fluoroscopic images of the beating heart with a static 3D image data set of the same heart. The fluoroscopic images are registered with the 3D image data set and from this a 2D pseudo-projection on to the image plane of each fluoroscopic image generated in each case. This is then represented with the associated fluoroscopic image overlaid. The method is characterized in that the pseudo-projection is represented differently in each case or is not represented depending on the interval of the cardiac phase of the currently represented fluoroscopic image relative to the cardiac phase of the 3D image data set.
摘要:
Method and apparatus for visually supporting an electrophysiological catheter application in the heart by means of bidirectional information transfer The present invention relates to a method and apparatus for visually supporting an electrophysiological catheter application in the heart. For the method, 3D image data of at least the heart, which is captured using a tomographic 3D imaging method prior to execution of the catheter application, and electroanatomical 3D mapping data of at least one area of the heart to be treated, which is captured during execution of the catheter application, is provided and the electroanatomical 3D mapping data and/or at least part of the 3D image data is displayed during execution of the catheter application. The method is characterized in that, in the electroanatomical 3D mapping data and/or the 3D image data, the contour of one or more areas (3) relevant to the catheter application is captured and transferred to the other system in each case on which the areas (3) are superimposed as a single polyline (5) in the representation (2, 4) of the electroanatomical 3D mapping data and/or 3D image data. The method proposed and the associated apparatus provide the user with a rapid overview of the areas relevant to the catheter application.
摘要:
The invention relates to a method and a device for marking three-dimensional structures on two-dimensional projection images of an object, with which a position marker is determined on two projection images of the object recorded from different projection directions, from which the position of the position marker in the three-dimensional space is calculated so that further, subsequently recorded projection images can be displayed superimposed by the position marker.
摘要:
The invention relates to an arrangement having a 3D device, the 3D device being embodied for acquiring an objects and generating a 3D acquisition result representing the object at least partially in at least three dimensions. The arrangement also has a 2D device, the 2D device being embodied for acquiring the object and generating a 2D acquisition result representing the object in at least two dimensions. The 2D acquisition result represents the object at least partially, in particular a top view of the object, a view through the object or a section through the objects. The invention is characterized in that the 3D devices and the 2D devices are connected to one another, mechanically electrically, in such a way that a part of the 3D acquisition result corresponding to an object location can be assigned to a part of the 2D acquisition result corresponding to the same object location.
摘要:
The invention relates to a method and a device for marking three-dimensional structures on two-dimensional projection images of an object, with which a position marker is determined on two projection images of the object recorded from different projection directions, from which the position of the position marker in the three-dimensional space is calculated so that further, subsequently recorded projection images can be displayed superimposed by the position marker.
摘要:
In a method for mathematical compensation of a periodic movement of an organ in a first image-generation method used to image said organ, two time series of three-dimensional image data are acquired using gating, one by the first image-generation method and one by the second image-generation method, the image data that have been acquired by the second image-generation method being used to calculate motion fields which are applied for the compensation of the data from the time series which was acquired by the first image-generation method. The compensation encompasses the mathematical inclusion of motion fields and the mapping of the image data to a reference time. All the image data mapped back to the reference time are added together.
摘要:
The present invention relates to a method for imaging using an image-generating, endoluminal instrument (1) by means of which a sequence of 2D image data of a hollow channel (2), in particular a vessel, of an object under investigation is recorded, wherein the images are recorded in a known temporal relation to a periodic movement of the object under investigation and spatial coordinates of the image are captured by means of a position sensor during each recording of an image (5) and stored as position data (9, 10) together with the 2D image data of the image (5). The method is characterized in that first position data (10) which does not lie in a predefinable movement phase of the object under investigation is corrected, before or after being stored, by interpolation between second position data (9) which does lie in the specified movement phase and/or by subtraction or addition of predetermined values. By means of the method a movement correction of the data can be performed without the need to reduce the volume of recorded image material.
摘要:
The device according to the invention ensures accurate and in particular sensitive navigation of the probe, which can be inserted into a body, despite the fact that the remote control uses simple means, by means of a movement (MR;MB;MP) corresponding intuitively to the navigation of a probe using the control device (1). Intuitive operation can be converted in particular using an inventive U-shaped embodiment of the control device (1). Sensitive controllability can be increased by transmitting the mechanical interaction between the probe and an environment under examination to the control device (1) and thus directly to the operating hand (3) by means of inventive feedback.
摘要:
The present invention relates to a method and a device for correcting motion in imaging during a medical intervention, by which method a 3D tomographic image of a target area for the intervention is first recorded while there are one or more medical instruments in the target area that will remain there during the intervention. During the intervention 2D fluoroscopic images of the target area are recorded and registered with the 3D image. The registration is therein adjusted for each 2D fluoroscopic image in realtime based in each case on the one or more instruments. The 2D fluoroscopic images are then in each case visualized with representations, concurring in terms of perspective, of the 3D image. Virtually error-free overlaying of the 3D image with in each case one 2D fluoroscopic image can be implemented using the present method and associated device.