Abstract:
A method for the merged display of first image information captured using a first imaging device with second image information captured using a second imaging device is provided. The first imaging device records fluorescence images of the area under examination. A second 3D image data record of the area under examination is recorded using an examination procedure based on electromagnetic radiation, such as computer tomography (CT) or magnetic resonance imaging (MRI). The 3D fluorescence image data record and the second 3D image data record are registered with one another, and one or more fluorescence-optically marked, relevant areas of the examination volume, on the basis of the mapping rules determined by the registration process, are displayed on a monitor.
Abstract:
To make interventional instruments such as catheters more easily identifiable in X-ray images, the catheters are provided with marking elements which can be recognized in the X-ray image. Examples of marking elements are sphere-shaped and ring-shaped marking elements, the ring-shaped marking elements being able to identify the catheters in the manner of a barcode and so being able to make different catheters distinguishable from one another in the X-ray image.
Abstract:
A method and a device for obtaining a volume data set of a mobile tissue or organ of a patient by a C-arm X-ray device are provided. An electromagnetic sensor of a position detection system is arranged indirectly on the tissue or organ. The X-ray device obtains a plurality of X-ray projections from the tissue or organ from various projection directions. A first method consists of reconstructing a volume data set from the X-ray projections, in which the electromagnetic sensor adopts a position characterizing a displacement phase of the tissue or organ. A second method consists of reconstructing a volume data set from the X-ray projections captured when the electromagnetic sensor was located in a position characterizing a displacement phase of the tissue or organ. A third method does not capture an X-ray projection for the reconstruction if the electromagnetic sensor is located in a position characterizing a displacement phase.
Abstract:
A method for implementing per-use licensing for image processing software includes acquiring image data from an image scanner. Processed image data is calculated from the image data using an image processing module. The processed image data is exported. The use of the image processing module is logged in an accounting database when the processed data are exported. Access to the accounting database is provided for account settlement.
Abstract:
The invention relates to a method and a device for the combined representation of a series of 2D fluoroscopic images of the beating heart with a static 3D image data set of the same heart. The fluoroscopic images are registered with the 3D image data set and from this a 2D pseudo-projection on to the image plane of each fluoroscopic image generated in each case. This is then represented with the associated fluoroscopic image overlaid. The method is characterized in that the pseudo-projection is represented differently in each case or is not represented depending on the interval of the cardiac phase of the currently represented fluoroscopic image relative to the cardiac phase of the 3D image data set.
Abstract:
A device and a method for controlling ablation energy for performing an electrophysiological catheter application are provided. Measured parameters that are characteristic for guidance of a catheter are received by a communication module. The characteristic parameter values are compared with at least one predefined threshold value by a control module. The control module generates control data for guidance of the catheter as a function of the result of the comparison. The control data is output to at least one control station by output interfaces for controlling the guidance of the catheter for the purpose of adjusting the ablation energy of the catheter.
Abstract:
With a method for supporting an interventional medical operation, a 3-dimensional image data set is recorded before the method. A positioning system is coupled with the coordinates system of the 3-dimensional image data set. The instrument is positioned and the position of the instrument in the 3-dimensional image data set is determined as an instrument image data point. Two further target image data points are determined in the target region, in which the instrument is to be guided. A plane is defined in this way. In this plane, the image data is used for a 2-dimensional display. Both the instrument image data point and also the two target image data points can be identified on the display, so that the target region of an interventional operation and an interventional medical device are displayed on an image at the same time. The image can be tracked during the interventional medical operation.
Abstract:
The invention relates to a temperature probe for insertion into the human or animal body, having an unfoldable balloon on a catheter, on the outer skin of which balloon one or more temperature sensors is or are disposed. The catheter can be moved by way of a cable and according to one aspect of the invention an ultrasound sensor is disposed on its tip. Position sensors can also be provided on the outer skin of the balloon. The temperature probe is used to monitor the temperature distribution in the esophagus during a catheter ablation.
Abstract:
The invention relates to a method for providing a 3D x-ray image data record of a patient, in particular of the heart, by an x-ray imaging system connected to a measuring facility which monitors the breathing phases of the patient. The x-ray image system is automatically activated repeatedly when a predetermined breathing phase is reached and an image acquisition operation is carried out, during which a plurality of 2D x-ray images are recorded. An individual 3D image data record is reconstructed from the 2D x-ray images of each image acquisition operation and the different 3D image data records are registered in pairs in order to assign them in a correct positional and dimensional arrangement. Registration parameters are obtained during the registration. The 3D image data record is reconstructed from 2D x-ray images from all image acquisition operations using the registration parameters.
Abstract:
The invention relates to a method and a device for registering 2D projection images of an object relative to a 3D image data record of the same object, in which, from just a few 2D projection images, a 3D feature contained in an object, which is also identifiable in the 3D images, is symbolically reconstructed. The 3D feature obtained in this way is then registered by 3D-3D registration with the 3D image data record.