Abstract:
A differential sensing scheme provides a means for detecting one or more touch events on a touch sensitive device in the presence of incident noise. Instead of sensing one touch sensitive channel, such as a row, column, or single touch sensor, multiple touch sensitive channels are sampled at a time. By sampling two nearby channels simultaneously and doing the measurement differentially, noise common to both channels is cancelled. The differential sensing scheme is implemented using simple switch-capacitor AFE circuitry. The originally sensed data on each individual channel is recovered free of common-mode noise. The recovered sensed data is used to determine the presence of one or more touch events and if present the location of each touch event on the touch sensitive device.
Abstract:
A touchscreen system for increasing the dynamic range of the system comprising a touchscreen coupled to an offset cancellation element and a capacitance measuring element. The offset cancellation element is configured to be dynamically changed in capacitance such that it offsets parasitic and sensor capacitances of the touchscreen sensors thereby leaving only touch event capacitance to be measured by the measuring element. The offset cancellation element is able to adjust to the initial unwanted capacitances of each sensor as well as dynamically adjust to changes in the unwanted capacitance due to the environment. In some embodiments, the offset cancellation element is a capacitance digital-to-analog converter that is controlled by a controller for offsetting the unwanted capacitance. As a result, the touchscreen system is able to utilize a small integrating capacitor thereby lowering cost and improving the dynamic range of the system.
Abstract:
A system includes a sub-binary radix digital-to-analog converter (DAC) that converts a digital input signal to an analog output signal based on a sub-radix DAC code. A radix conversion module performs radix conversion on the digital input signal. To perform the radix conversion, the radix conversion module associates bit positions corresponding to the digital input signal with respective analog weights and converts the digital input signal to the sub-radix DAC code based on the respective analog weights.
Abstract:
Techniques are described for providing highly integrated and configurable IO ports for integrated circuits that can be individually configured for a variety of general purpose digital or analog functions, such as multiple channel analog-to-digital converters (ADC), multiple channel digital-to-analog converters (DAC), multiplexers, GPIOs, analog switches, switch and multiplexers, digital logic level translators, comparators, temperature sensors and relays, and so forth. The configurations of individual ports can be set by a configuration register that can, for instance, designate the function and voltage range of the port without impacting the other ports. In embodiments, logic mapping of a port order sequence can be defined. A data register can also be included for handling microcontroller commands and storing conversion results from, for instance, a port functioning as an ADC input port. These capabilities can be combined with its multi-range, high voltage and high current capability to increase functionality.
Abstract:
Techniques are described for providing highly integrated and configurable IO ports for integrated circuits that can be individually configured for a variety of general purpose digital or analog functions, such as multiple channel analog-to-digital converters (ADC), multiple channel digital-to-analog converters (DAC), multiplexers, GPIOs, analog switches, switch and multiplexers, digital logic level translators, comparators, temperature sensors and relays, and so forth. The configurations of individual ports can be set by a configuration register that can, for instance, designate the function and voltage range of the port without impacting the other ports. In embodiments, logic mapping of a port order sequence can be defined. A data register can also be included for handling microcontroller commands and storing conversion results from, for instance, a port functioning as an ADC input port. These capabilities can be combined with its multi-range, high voltage and high current capability to increase functionality.
Abstract:
Techniques are described for providing highly integrated and configurable IO ports for integrated circuits that can be individually configured for a variety of general purpose digital or analog functions, such as multiple channel analog-to-digital converters (ADC), multiple channel digital-to-analog converters (DAC), multiplexers, GPIOs, analog switches, switch and multiplexers, digital logic level translators, comparators, temperature sensors and relays, and so forth. The configurations of individual ports can be set by a configuration register that can, for instance, designate the function and voltage range of the port without impacting the other ports. In embodiments, logic mapping of a port order sequence can be defined. A data register can also be included for handling microcontroller commands and storing conversion results from, for instance, a port functioning as an ADC input port. These capabilities can be combined with its multi-range, high voltage and high current capability to increase functionality.
Abstract:
Techniques are described for providing highly integrated and configurable IO ports for integrated circuits that can be individually configured for a variety of general purpose digital or analog functions, such as multiple channel analog-to-digital converters (ADC), multiple channel digital-to-analog converters (DAC), multiplexers, GPIOs, analog switches, switch and multiplexers, digital logic level translators, comparators, temperature sensors and relays, and so forth. The configurations of individual ports can be set by a configuration register that can, for instance, designate the function and voltage range of the port without impacting the other ports. In embodiments, logic mapping of a port order sequence can be defined. A data register can also be included for handling microcontroller commands and storing conversion results from, for instance, a port functioning as an ADC input port. These capabilities can be combined with its multi-range, high voltage and high current capability to increase functionality.