Abstract:
A stented valve including a stent structure having a generally tubular body portion, an interior area, a longitudinal axis, an first end, an second end, and an outer surface; at least one outflow barb extending from the outer surface of the stent adjacent to the first end of the stent structure and toward the second end of the stent structure; at least one inflow barb extending from the outer surface of the stent adjacent to the second end of the stent structure and toward the first end of the stent structure; and a valve structure attached within the interior area of the stent structure.
Abstract:
A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.
Abstract:
A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the stent which includes a plurality of self-expanding struts and an annular sealing membrane. Each strut has a first end coupled to a distal end of the stent and a second end not coupled to the stent. Each anti-paravalvular leakage component is moveable between a compressed configuration and a deployed configuration. In the compressed configuration, each strut extends distally away from the distal end of the stent. In the deployed configuration, each strut extends proximally away from the distal end of the stent. In an embodiment hereof, the deployed strut has a C-shape and is twisted such that the C-shape lies in a plane substantially along or tangential with the outer surface of the stent. In another embodiment hereof, the deployed strut is rolled-up and extends radially away from the outer surface of the stent.
Abstract:
A transcatheter valve prosthesis includes a stent and a prosthetic valve disposed within the stent. The stent is balloon expandable and includes an inflow portion, an outflow portion, and a transition portion extending between the inflow portion and the outflow portion. A diameter of an inflow end of the transcatheter valve prosthesis is greater than a diameter of an outflow end of the transcatheter valve prosthesis. The transcatheter valve prosthesis has a tapered profile along an entire height thereof when in the stent is in the expanded configuration. The inflow end of the transcatheter valve prosthesis is configured to sit within and contact an aortic annulus of the native aortic valve and the outflow end of the transcatheter valve prosthesis being configured to float within an ascending aorta without contacting the ascending aorta due to the tapered profile of the transcatheter valve prosthesis.
Abstract:
A stented valve including a stent structure having a generally tubular body portion, an interior area, a longitudinal axis, an first end, an second end, and an outer surface; at least one outflow barb extending from the outer surface of the stem adjacent to the first end of the stent structure and toward the second end of the stent structure; at least one inflow barb extending from the outer surface of the stent adjacent to the second end of the stent structure and toward the first end of the stent structure; and a valve structure attached within the interior area of the stent structure.
Abstract:
A transcatheter valve prosthesis includes a balloon expandable stent and a prosthetic valve. An inflow portion of the stent includes a plurality of crowns and a plurality of struts with each crown being formed between a pair of opposing struts. Endmost inflow side openings and endmost inflow crowns are formed at the inflow end of the stent and the inflow end of the stent has a total of twelve endmost inflow crowns. An outflow portion of the stent includes a plurality of crowns and a plurality of struts with each crown being formed between a pair of opposing struts. Endmost outflow crowns are formed at the outflow end of the stent and the outflow end of the stent has a total of six endmost outflow crowns. The prosthetic valve is disposed within and secured to the stent.
Abstract:
A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.