Abstract:
A cardiac medical system, such as an implantable cardioverter defibrillator (ICD) system, receives a cardiac electrical signal by and senses cardiac events when the signal crosses an R-wave sensing threshold. The system determines at least one sensed event parameter from the cardiac electrical signal for consecutive cardiac events sensed by the sensing circuit and compares the sensed event parameters to P-wave oversensing criteria. The system detects P-wave oversensing in response to the sensed event parameters meeting the P-wave oversensing criteria; and adjusts at least one of an R-wave sensing control parameter or a therapy delivery control parameter in response to detecting the P-wave oversensing.
Abstract:
A method and medical device for detecting a cardiac event that includes sensing a cardiac signal, identifying R-waves in the cardiac signal attendant ventricular depolarizations, determining RR-intervals between successive R-waves in response to the sensed cardiac signal, detecting an atrial tachyarrhythmia based on an analysis of the RR-intervals, iteratively sensing groups of a predetermined number of P-waves attendant atrial depolarizations in response to detecting the atrial tachyarrhythmia, and confirming the atrial tachyarrhythmia based on an analysis of the iteratively sensed groups of P-waves.
Abstract:
A method and medical device for detecting a cardiac event that includes sensing a cardiac signal, identifying R-waves in the cardiac signal attendant ventricular depolarizations, determining RR-intervals between successive R-waves in response to the sensed cardiac signal, detecting an atrial tachyarrhythmia based on an analysis of the RR-intervals, iteratively sensing groups of a predetermined number of P-waves attendant atrial depolarizations in response to detecting the atrial tachyarrhythmia, and confirming the atrial tachyarrhythmia based on an analysis of the iteratively sensed groups of P-waves.
Abstract:
Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace/sense electrode(s) are concurrently positioned substantially over the ventricle when implanted as described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first electrode segment and a second electrode segment proximal to the first electrode segment by a distance. The leads may include at least one pace/sense electrode, which in some instances, is located between the first defibrillation electrode segment and the second defibrillation electrode segment.
Abstract:
An implantable medical device system includes an extracardiac sensing device and an intracardiac pacemaker. The sensing device senses a P-wave attendant to an atrial depolarization of the heart via housing-based electrodes carried by the sensing device when the sensing device is implanted outside the cardiovascular system and sends a trigger signal to the intracardiac pacemaker in response to sensing the P-wave. The intracardiac pacemaker detects the trigger signal and schedules a ventricular pacing pulse in response to the detected trigger signal.
Abstract:
Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace/sense electrode(s) are concurrently positioned substantially over the ventricle when implanted as described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first electrode segment and a second electrode segment proximal to the first electrode segment by a distance. The leads may include at least one pace/sense electrode, which in some instances, is located between the first defibrillation electrode segment and the second defibrillation electrode segment.
Abstract:
A system for detecting an atrial tachyarrhythmia episode includes a medical device having sensing circuitry configured to receive a cardiac electrical signal from electrodes coupled to the medical device and a processor configured to detect an atrial tachyarrhythmia episode in response to a time duration of the cardiac electrical signal classified as an atrial tachyarrhythmia being greater than or equal to a first detection threshold. The processor is configured to determine if detection threshold adjustment criteria are met based on at least the detected first atrial tachyarrhythmia episode and adjust the first detection threshold to a second detection threshold different than the first detection threshold in response to the detection threshold adjustment criteria being met.
Abstract:
A cardiac medical system, such as an implantable cardioverter defibrillator (ICD) system, receives a cardiac electrical signal by and senses cardiac events when the signal crosses an R-wave sensing threshold. The system determines at least one sensed event parameter from the cardiac electrical signal for consecutive cardiac events sensed by the sensing circuit and compares the sensed event parameters to P-wave oversensing criteria. The system detects P-wave oversensing in response to the sensed event parameters meeting the P-wave oversensing criteria; and adjusts at least one of an R-wave sensing control parameter or a therapy delivery control parameter in response to detecting the P-wave oversensing.