Abstract:
A medical device system and associated method predict a patient response to a cardiac therapy. The system includes for delivering cardiac pacing pulses to a patient's heart coupled to a cardiac sensing module and a cardiac pacing module for generating cardiac pacing pulses and controlling delivery of the pacing pulses at multiple pace parameter settings. An acoustical sensor obtains heart sound signals. A processor is enabled to receive the heart sound signals, derive a plurality of heart sound signal parameters from the heart sound signals, and determine a trend of each of the plurality of heart sound signal parameters with respect to the plurality of pace parameter settings. An external display is configured to present the trend of at least one heart sound parameter with respect to the plurality of pace parameter settings.
Abstract:
Provided herewith are methods and apparatus for optimizing an atrioventricular (AV) pacing delay interval. One manner described involves dynamically programming an AV interval in cardiac resynchronization therapy (CRT) device having a rate-adaptive AV (RAAV) feature in such a way that not less than a minimum AV interval is maintained. That is, the AV interval is not allowed to be reduced so much that the P-wave is truncated by the QRS complex. In this form of the invention, the AV interval is reduced by one millisecond per one bpm increase in heart rate (and vice versa for reducing heart rate) but maintained at a value calculated from the end of the P-wave (PWend) and the beginning of the QRS complex (QRSbeg) or delivery of a ventricular pacing stimulus or to the end of the end of the QRS complex (QRSend).
Abstract:
Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
Abstract:
A medical device and associated method for controlling a cardiac pacing therapy sense a first cardiac signal including events corresponding to cardiac electrical events and a second cardiac signal including events corresponding to cardiac hemodynamic events. A processor is enabled to measure a cardiac conduction time interval using the first cardiac signal and control a signal generator to deliver a pacing therapy. A pacing control parameter is adjusted to a plurality of settings during the pacing therapy delivery. A hemodynamic parameter value is measured from the second cardiac signal during application of each of the control parameter settings. The processor identifies an optimal setting from the plurality of settings and solves for a patient-specific equation defining the pacing control parameter as a function of the cardiac conduction time interval.
Abstract:
Provided herewith are methods and apparatus for optimizing an atrioventricular (AV) pacing delay interval. One manner described involves dynamically programming an AV interval in cardiac resynchronization therapy (CRT) device having a rate-adaptive AV (RAAV) feature in such a way that not less than a minimum AV interval is maintained. That is, the AV interval is not allowed to be reduced so much that the P-wave is truncated by the QRS complex. In this form of the invention, the AV interval is reduced by one millisecond per one bpm increase in heart rate (and vice versa for reducing heart rate) but maintained at a value calculated from the end of the P-wave (PWend) and the beginning of the QRS complex (QRSbeg) or delivery of a ventricular pacing stimulus or to the end of the end of the QRS complex (QRSend).