Abstract:
A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
Abstract:
Provided herewith are methods and apparatus for optimizing an atrioventricular (AV) pacing delay interval based upon ECG-based optimization is calculated as a linear function of P-wave duration, sensed PR (intrinsic) interval, sensed or paced QRS duration and heart rate. Since the relationship among these parameters is linear, once the coefficients are solved (which can be any value, including null) with reference to a known optimized AV interval (AVopt) such as from an echocardiographic study, an AVopt value can be dynamically adjusted in an ambulatory subject. The various combinations of values can be loaded into a look up table or calculated automatically. And, since some of the parameters do not typically change much over time they can be determined acutely and fed into the equation while the other values can be measured frequently. The parameter values can be measured by an implantable medical device such as a dual- or triple-chamber pacemaker.
Abstract:
Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
Abstract:
An implantable device and associated method for delivering multi-site pacing therapy is disclosed. The device comprises a set of electrodes including a first ventricular electrode and a second ventricular electrode, spatially separated from one another and all coupled to an implantable pulse generator. The device comprises a processor configured for selecting a first cathode and a first anode from the set of electrodes to form a first pacing vector at a first pacing site along a heart chamber and selecting a second cathode and a second anode from the set of electrodes to form a second pacing vector at a second pacing site along the same heart chamber. The pulse generator is configured to deliver first pacing pulses to the first pacing vector and delivering second pacing pulses to the second pacing vector. The pulse generator generates a recharging current for recharging a first coupling capacitor over a first recharge time period in response to the first pacing pulses. The pulse generator for generating a recharging current for recharging a second coupling capacitor over a second recharge time period in response to the second pacing pulses. An order of recharging the first and second coupling capacitors is dependent upon one of ventricular pacing mode, left ventricle to right ventricle delay (V-V) pace delay, multiple point LV delay and latest delivered pacing pulses to one of the first and second pacing vectors.
Abstract:
Provided herewith are methods and apparatus for optimizing an atrioventricular (AV) pacing delay interval. One manner described involves dynamically programming an AV interval in cardiac resynchronization therapy (CRT) device having a rate-adaptive AV (RAAV) feature in such a way that not less than a minimum AV interval is maintained. That is, the AV interval is not allowed to be reduced so much that the P-wave is truncated by the QRS complex. In this form of the invention, the AV interval is reduced by one millisecond per one bpm increase in heart rate (and vice versa for reducing heart rate) but maintained at a value calculated from the end of the P-wave (PWend) and the beginning of the QRS complex (QRSbeg) or delivery of a ventricular pacing stimulus or to the end of the end of the QRS complex (QRSend).
Abstract:
The disclosure describes systems and techniques for detection of pump thrombosis in mechanical circulatory support (MCS) devices. An example pump thrombosis detection system includes a transducer and processing circuitry. The transducer may be configured to generate a signal representative of a mechanical wave from a mechanical circulatory support device. The processing circuitry is communicatively coupled to the transducer. The processing circuitry may be configured to determine an indication of pump thrombosis based on the signal and, based on the indication of pump thrombosis, control the pump thrombosis detection system to at least one of generate an alert or initiate an intervention.
Abstract:
Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
Abstract:
Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous device (e.g. subcutaneous implantable (SD)) is described. In one or more other embodiments, SD is implanted into a patient's heart. Electrical signals are then sensed which includes moderately lengthened QRS duration data from the patient's heart. A determination is made as to whether cardiac resynchronization pacing therapy (CRT pacing) is appropriate based upon the moderately lengthened QRS duration in the sensed electrical signals. The CRT pacing pulses are delivered to the heart using electrodes. In one or more embodiments, the SD can switch between fusion pacing and biventricular pacing based upon data (e.g. moderately lengthened QRS, etc.) sensed from the heart.
Abstract:
Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous device (e.g. subcutaneous implantable (SD)) and a leadless pacing device (LPD) are described. In one or more embodiments, a computer-implemented method includes sensing a first electrical signal from a heart of a patient through a SD. The first signal is stored into memory and serves as a baseline rhythm for a patient. Subsequently, a second signal is sensed from the heart through the SD. A cardiac condition can be detected within the sensed second electrical signal through the SD. A determination is made as to whether cardiac resynchronization therapy (CRT) is appropriate to treat the detected cardiac condition. A determination can then be made as to the timing of pacing pulse delivery to cardiac tissue through a leadless pacing device (LPD). The LPD receives communication from the SD requesting the LPD to deliver CRT to the heart. The SD senses and extracts data from a third electrical signal from the heart of the patient to determine whether the pacing by LPD provided efficacious resynchronization or whether the delivery and timing of the LPD pulse should be modified.
Abstract:
A medical device and associated method for controlling a cardiac pacing therapy sense a first cardiac signal including events corresponding to cardiac electrical events and a second cardiac signal including events corresponding to cardiac hemodynamic events. A processor is enabled to measure a cardiac conduction time interval using the first cardiac signal and control a signal generator to deliver a pacing therapy. A pacing control parameter is adjusted to a plurality of settings during the pacing therapy delivery. A hemodynamic parameter value is measured from the second cardiac signal during application of each of the control parameter settings. The processor identifies an optimal setting from the plurality of settings and solves for a patient-specific equation defining the pacing control parameter as a function of the cardiac conduction time interval.