摘要:
Strengthened glass substrates with glass fits and methods for forming the same are disclosed. According to one embodiment, a method for forming a glass frit on a glass substrate may include providing a glass substrate comprising a compressive stress layer extending from a surface of the glass substrate into a thickness of the glass substrate, the compressive stress having a depth of layer DOL and an initial compressive stress CSi. A glass frit composition may be deposited on at least a portion of the surface of the glass substrate. Thereafter, the glass substrate and the glass frit composition are heated in a furnace to sinter the glass fit composition and bond the glass frit composition to the glass substrate, wherein, after heating, the glass substrate has a fired compressive stress CSf which is greater than or equal to 0.70*CSi.
摘要:
Strengthened glass substrates with glass fits and methods for forming the same are disclosed. According to one embodiment, a method for forming a glass frit on a glass substrate may include providing a glass substrate comprising a compressive stress layer extending from a surface of the glass substrate into a thickness of the glass substrate, the compressive stress having a depth of layer DOL and an initial compressive stress CSi. A glass frit composition may be deposited on at least a portion of the surface of the glass substrate. Thereafter, the glass substrate and the glass frit composition are heated in a furnace to sinter the glass fit composition and bond the glass frit composition to the glass substrate, wherein, after heating, the glass substrate has a fired compressive stress CSf which is greater than or equal to 0.70*CSi.
摘要:
An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
摘要:
An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
摘要:
An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
摘要:
A dry glass-based fit, and methods of making a dry glass fit are disclosed. In one embodiment a dry glass frit comprises vanadium, phosphorous and a metal halide. The halide may be, for example, fluorine or chlorine. In another embodiment, a method of producing a dry glass frit comprises calcining a batch material for the frit, then melting the batch material in an inert atmosphere, such as a nitrogen atmosphere. In still another embodiment, a method of producing a dry glass frit comprises calcining a batch material for the frit, then melting the batch material in an air atmosphere, such as a nitrogen atmosphere
摘要:
An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
摘要:
The invention is directed to lead-free glass frit compositions that can be used as sealing frits, the compositions being a blend of: (1) at least one of two glass families which are SnO—ZnO—P2O5 and alkali-ZnO—P2O5 glasses; and (2) at least one cerammed filler material having a crystalline phase selected from the group consisting of beta-quartz, beta-eucryptite, cordierite, and beta-spodumene. The blends of the invention have flow characteristics that enable them to be used at sealing temperatures in the range of 450-550° C., and a CTE value in the range of 60-90×10−7/° C.
摘要翻译:本发明涉及可用作密封玻璃料的无铅玻璃料组合物,该组合物是以下混合物:(1)两种玻璃族中的至少一种,它们是SnO-ZnO-P 2 O 5和碱金属ZnO-P 2 O 5 O 3玻璃; 和(2)至少一种陶瓷填充材料,其具有选自β-石英,β-曙红,堇青石和β-锂辉石的结晶相。 本发明的共混物具有使其能够在450-550℃的密封温度下使用的流动特性,并且在60-90×10 -7 /℃范围内的CTE值 C。
摘要:
The invention is directed to lead-free glass frit compositions that can be used as sealing frits, the compositions being a blend of: (1) at least one of two glass families which are SnO—ZnO—P2O5 and alkali-ZnO—P2O5 glasses; and (2) at least one cerammed filler material having a crystalline phase selected from the group consisting of beta-quartz, beta-eucryptite, cordierite, and beta-spodumene. The blends of the invention have flow characteristics that enable them to be used at sealing temperatures in the range of 450-550° C., and a CTE value in the range of 60-90×10−7/° C.
摘要:
A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.