摘要:
A people counting system and method for the automatic reconfiguration of a failed people counting sensor device in a people counting system. The system includes a plurality of addressable people counting sensor devices defining a cluster having a master device in communication with at least one slave device, each of the master device and the slave devices having a corresponding Media Access Control (“MAC”) address. The master device is adapted to sequentially transmit power-on commands to each of the slave devices, assign a different node address to each of the slave devices, receive an association of the MAC address of the master device to the node address and MAC address of each of the slave devices to form a cluster configuration, store the cluster configuration as a cluster configuration table, and replicate the cluster configuration table to the slave devices. A dynamic host configuration protocol (DHCP) server assigns an IP public address to the master device.
摘要:
Systems (100) and methods (500, 600) for adaptively managing power for an Energy Harvesting System (“EHS”). The methods involve: measuring a light intensity level available in a surrounding environment; wirelessly communicating a first wireless signal from the EHS (100) to a remote device (700) for causing the light intensity level to be increased by remotely turning on a light source (106, 108) or opening a cover preventing light emitted from the light source from reaching the EHC, when the light intensity level is below a pre-specified level; using an Energy Harvesting Circuit (“EHC”) to recharge a rechargeable battery (310) when the light intensity level rises above the pre-specified level; and wirelessly communicating a second wireless signal from the EHS to the remote device for causing the light source be turned off or the cover to be closed, when the capacity or state-of-charge of the rechargeable battery reaches a pre-specified value.
摘要:
Systems (100) and methods (500, 600) for adaptively managing power for an Energy Harvesting System (“EHS”). The methods involve: measuring a light intensity level available in a surrounding environment; wirelessly communicating a first wireless signal from the EHS (100) to a remote device (700) for causing the light intensity level to be increased by remotely turning on a light source (106, 108) or opening a cover preventing light emitted from the light source from reaching the EHC, when the light intensity level is below a pre-specified level; using an Energy Harvesting Circuit (“EHC”) to recharge a rechargeable battery (310) when the light intensity level rises above the pre-specified level; and wirelessly communicating a second wireless signal from the EHS to the remote device for causing the light source be turned off or the cover to be closed, when the capacity or state-of-charge of the rechargeable battery reaches a pre-specified value.
摘要:
Systems (100) and methods (500, 600) for adaptively managing power for an Energy Harvesting System (“EHS”). The methods involve: measuring a light intensity level available in a surrounding environment; wirelessly communicating a first wireless signal from the EHS (100) to a remote device (700) for causing the light intensity level to be increased by remotely turning on a light source (106, 108) or opening a cover preventing light emitted from the light source from reaching the EHC, when the light intensity level is below a pre-specified level; using an Energy Harvesting Circuit (“EHC”) to recharge a rechargeable battery (310) when the light intensity level rises above the pre-specified level; and wirelessly communicating a second wireless signal from the EHS to the remote device for causing the light source be turned off or the cover to be closed, when the capacity or state-of-charge of the rechargeable battery reaches a pre-specified value.
摘要:
Systems (100) and methods (500, 600) for adaptively managing power for an Energy Harvesting System (“EHS”). The methods involve: measuring a light intensity level available in a surrounding environment; wirelessly communicating a first wireless signal from the EHS (100) to a remote device (700) for causing the light intensity level to be increased by remotely turning on a light source (106, 108) or opening a cover preventing light emitted from the light source from reaching the EHC, when the light intensity level is below a pre-specified level; using an Energy Harvesting Circuit (“EHC”) to recharge a rechargeable battery (310) when the light intensity level rises above the pre-specified level; and wirelessly communicating a second wireless signal from the EHS to the remote device for causing the light source be turned off or the cover to be closed, when the capacity or state-of-charge of the rechargeable battery reaches a pre-specified value.
摘要:
Systems and methods for controlling at least one security device based on the behavior of at least one tag. The methods comprise: generating sensor data relating to movement by at least one sensor disposed in a first tag; analyzing the sensor data to determine if an item to which the first tag is coupled is being handled in an unusual, abnormal or nervous manner; determining if an enterprise system has lost communicative contact with the first tag coupled to the item that is being handled in an unusual, abnormal or nervous manner; and causing an operational state of the security device to change in response to the loss of the communicative contact between the enterprise system and the first tag.
摘要:
Systems and methods for controlling at least one security device based on the behavior of at least one tag. The methods comprise: generating sensor data relating to movement by at least one sensor disposed in a first tag; analyzing the sensor data to determine if an item to which the first tag is coupled is being handled in an unusual, abnormal or nervous manner; determining if an enterprise system has lost communicative contact with the first tag coupled to the item that is being handled in an unusual, abnormal or nervous manner; and causing an operational state of the security device to change in response to the loss of the communicative contact between the enterprise system and the first tag.
摘要:
Systems and methods for managing inventory. The methods comprise: generating sensor data by an Electronic Smart Tag (“EST”); processing, by the EST or a computing device remote from the EST, the sensor data to transform the same into information specifying at least one of a first person's intention with regard to an item to which the EST is coupled and the first person's interest in the item; generating a notification or a recommendation relating to inventory management, based on at least one of the first person's intention with regard to the item and the first person's interest in the item; and providing the notification or recommendation to a second person.
摘要:
Systems and methods for managing inventory pricing. The methods comprise: programming, at a first location, an Electronic Smart Tag (“EST”) with at least first item level information comprising a first item description in a first language and a first item price in a first monetary currency; outputting the first item level information from the EST; and automatically replacing the first item level information being output from the EST with second item level information in response to the ESTs arrival at a second location different than and remote from the first location. The second item level information comprises the first item description in a second language different than the first language and the first item price in a second monetary currency different than the first monetary currency.
摘要:
Systems and methods for controlling access to a Restricted Area (“RA”). The methods involve: determining whether a person desires to enter RA; checking whether the person is authorized to enter RA using a first unique identifier associated with a wearable access sensor being worn thereby; causing the person's Portable Communication Device (“PCD”) to transmit a second unique identifier and location information useful in determining the PCD's location within a surrounding environment, when a determination is made that the person is authorized to enter RA; using the second unique identifier and location information to confirm that the person is currently located at an access point of RA; and causing actuation of a mechanical actuator to enable the person's entrance into RA when it is determined that the person desires to enter RA, the person is authorized to enter RA, and the person is currently located at the access point of RA.