摘要:
A method and apparatus for adaptive profile correction for rotating position encoders in reciprocating engines measures a raw engine speed derived from a rotating position encoder (107) driven by a reciprocating engine. A first corrected engine speed (1103) is provided dependent on the raw engine speed and a predetermined first encoder profile while the engine is operating bounded within a first speed range (905), and a second corrected engine speed (1103) is provided dependent on the raw engine speed and a predetermined second encoder profile while the engine is operating bounded within a second speed range (913).
摘要:
An acceleration based misfire detection system with improved signal fidelity comprises a measurement device (421, 423, 425, 427) for determining an operating condition of the powertrain (401). The operating condition can include engine speed, engine load, as well as other conditions. A misfire detector (417) provides a misfire indication (419) dependent on an improved fidelity acceleration signal (415). The improved fidelity acceleration signal (415) is provided by either a median filter (413) operating on an acceleration signal (411) where the median filter's rank is programmable dependent on the determined operating condition of the powertrain, a highpass filter operating on an acceleration signal (411) where the highpass filter's order is programmable dependent on the determined operating condition of the powertrain, or from an acceleration determination device (409) acting on velocity information provided by a lowpass filter (407) operating on a velocity signal (406) where the lowpass filter's order is programmable dependent on the determined operating condition of the powertrain, or a combination of the above.
摘要:
An apparatus, and a corresponding method, for determining misfire in a reciprocating engine operates on a selectable quantity of discrete sampled acceleration signals that are indicative of acceleration behavior of the reciprocating engine. A decimation device selects a quantity of the discrete sampled acceleration signals dependent on an engine family, and optionally engine operating conditions such as speed and load. An accelearation signal is selected from the sampled acceleration signals, preferably the sample having the most negative magnitude. A misfire determination device provides a misfire indication dependent on the selected acceleration signal.
摘要:
A method for detecting a misfire condition by interpreting acceleration of an engine crankshaft (301) is described. The method teaches measurement of a first engine crankshaft acceleration, (405) proximate a first predetermined engine crankshaft angle, and provides a first reading (407) indicative of the first engine crankshaft acceleration, measurement of a second engine crankshaft acceleration, (417) proximate a second predetermined engine crankshaft angle, and provides a second reading (419) indicative of the second engine crankshaft acceleration, then combines (421) the first reading and the second reading and provides an acceleration coefficient (423) indicative of the combined readings. Then, a misfire is indicated (427) when the acceleration coefficient does not exceed a predetermined limit.
摘要:
A misfire detection system and method measures fluctuations of air charge ingested into an engine 303, preferably as fluctuations of the engine's intake air pressure or as fluctuations of the mass air flow. A misfire indication 337 is provided dependent on a behavior of the fluctuations of air charge. Preferably, to eliminate errors associated with engine transient operating conditions, such as acceleration, the fluctuations of air charge are differentiated 325 before a misfire detection mechanism 333 is used to determine misfire behavior.
摘要:
A method for detrending engine positional data includes acquiring positional encoder data over a plurality of consecutive engine revolutions as the engine is decelerating. Then, a trend (207) in the acquired positional encoder data consistent with behavior occurring at less than a frequency of one cycle per engine revolution is identified. Next, corrected positional encoder data (208) is generated dependent on removing the identified trend (207).
摘要:
An arrangement is disclosed wherein a luminosity detector and a pressure transducer are used in an internal combustion engine to determine the burned gas temperature and trapped mass within each combustion chamber of the engine on a cycle-to-cycle basis or over a period of cycles, and to predict NO.sub.x emissions from the engine. Also disclosed is an arrangement wherein the burned gas temperature in each combustion chamber can be determined using only the luminosity detector.
摘要:
A method and apparatus for controlling spark reignition in an internal combustion engine based on the detected luminosity or pressure in the combustion chamber is provided. Only the luminosity or pressure measurement may be used as a basis for this control. This method and apparatus is also capable of providing same cycle control of spark reignition.
摘要:
A system for detecting the presence of a knock condition by interpreting a broadband spectra signal as measured from an internal combustion engine is described. The system includes a spectra measurement device, preferably an accelerometer (101) mounted to an engine for providing a broadband spectra signal (103) to a knock detector (105). Preferably the knock detector (105) is based on a digital signal processor. The signal (103) is provided simultaneously to knock discrimination elements (405, 409, and 413), that provide a knock spectra signal (415) representative of the average energy within a predetermined knock spectra, and noise discrimination elements (417, 421, and 425), that provide a noise spectra signal (427) representative of average energy within a predetermined noise spectra. The knock spectra signal (415) is combined with the noise spectra signal (427) to provide a knock signal (431) when an engine knocking condition is detected.
摘要:
An internal combustion engine having a luminosity probe and an arrangement for measuring certain parameters such as IMEP, combustion chamber pressure, heat release and the like by measuring luminosity in the chamber and adjusting the running parameters of the engine to obtain the desired luminosity. Also disclosed is an arrangement for maintaining uniformity from cycle to cycle in a given combustion chamber and uniformity combustion in the combustion chambers of a multi-chamber engine.