摘要:
Systems, methods and apparatus are provided for scheduling resources in Orthogonal Frequency-Division Multiple Access (OFDMA) communication networks for “direct link” or peer-to-peer communications among stations operating therein so that OFDMA resources can be allocated to a transmitter station for a peer-to-peer communication session with a receiver station such that near-far issues caused by peer-to-peer communication are reduced/avoided. The disclosed technologies can prevent peer-to-peer communication links using different sub-channels within the same time slot from creating near-far issues for other receiver stations that are within communication range.
摘要:
A base station allocates resources for peer-to-peer communications by creating or updating peer sets from measured performance information received from one or more stations. Based on current resource assignments in each timeslot and based on the peer sets, the base station determines excluded timeslots and preferred timeslots. The base station then marks potential resources in a portion of a resource allocation map. One of the potential resources is allocated for peer-to-peer communication between a transmitter station and one or more receiver stations.
摘要:
Systems, methods and apparatus are provided for scheduling resources in Orthogonal Frequency-Division Multiple Access (OFDMA) communication networks for “direct link” or peer-to-peer communications among stations operating therein so that OFDMA resources can be allocated to a transmitter station for a peer-to-peer communication session with a receiver station such that near-far issues caused by peer-to-peer communication are reduced/avoided. The disclosed technologies can prevent peer-to-peer communication links using different sub-channels within the same time slot from creating near-far issues for other receiver stations that are within communication range.
摘要:
Systems, methods and apparatus are provided for scheduling resources in Orthogonal Frequency-Division Multiple Access (OFDMA) communication networks for “direct link” or peer-to-peer communications among stations operating therein so that OFDMA resources can be allocated to a transmitter station for a peer-to-peer communication session with a receiver station such that near-far issues caused by peer-to-peer communication are reduced/avoided. The disclosed technologies can prevent peer-to-peer communication links using different sub-channels within the same time slot from creating near-far issues for other receiver stations that are within communication range.
摘要:
Some embodiments are directed to a method and apparatus for performing resource negotiation in a station implementing a direct communication link with at least one other station on an Orthogonal Frequency-Division Multiple Access (OFDMA) data channel. The station scans sub-channels on the data channel for base headers included in predefined position in transmissions sent on the sub-channel. The station then decodes a base header in at least one selected sub-channel to obtain parameters of a channel reservation. The obtained parameters are stored in a channel utilization table. The station selects a resource on the data channel in at least one of time or frequency that the station has observed to be free using information from the channel utilization table. The station then begins a resource negotiation process about the selected resource.
摘要:
Some embodiments are directed to a method and apparatus for performing resource negotiation in a station implementing a direct communication link with at least one other station on an Orthogonal Frequency-Division Multiple Access (OFDMA) data channel. The station scans sub-channels on the data channel for base headers included in predefined position in transmissions sent on the sub-channel. The station then decodes a base header in at least one selected sub-channel to obtain parameters of a channel reservation. The obtained parameters are stored in a channel utilization table. The station selects a resource on the data channel in at least one of time or frequency that the station has observed to be free using information from the channel utilization table. The station then begins a resource negotiation process about the selected resource.
摘要:
An evolved Node B creates or updates peer sets from measured performance information received from one or more stations. The measured performance information includes at least one quality metric associated with a downlink signal sent from the evolved Node B to the one or more stations. The evolved Node B determines excluded timeslots and preferred timeslots based on current resource assignments in each timeslot and based on the peer sets, marks potential resources in an uplink portion of a resource allocation map, and allocates one of the potential resources for peer-to-peer communication between a transmitter station and one or more receiver stations.
摘要:
An evolved Node B creates or updates peer sets from measured performance information received from one or more stations. The measured performance information includes at least one quality metric associated with a downlink signal sent from the evolved Node B to the one or more stations. The evolved Node B determines excluded timeslots and preferred timeslots based on current resource assignments in each timeslot and based on the peer sets, marks potential resources in an uplink portion of a resource allocation map, and allocates one of the potential resources for peer-to-peer communication between a transmitter station and one or more receiver stations.
摘要:
A linear transmitter includes an amplifier feedback loop for amplifying an input signal at a power amplifier. The feedback loop is operated in an open loop mode when the power amplifier is operating at a first operating point and is operated in a closed loop mode when the power amplifier is operating at a second operating point. The transmitter further includes an auxiliary loop coupled to the amplifier feedback loop that provides phase training for the feedback loop and power leveling when the feedback loop is operating open loop. Open loop phase training and power leveling is done during open loop transmission, without an associated training signal or training period. Stable closed loop operation can commence subsequently providing the higher power amplifier efficiency associated with the second operating point and maintaining off channel interference requirements.
摘要:
A broadband device (105) can detect a proximate narrowband transmission (152) from a narrowband communication device (145). The narrowband transmission (152) can be in close enough proximity (155) to at least one bearer channel of the broadband device (105) to result in interference on the narrowband reception (152) when the broadband device (105) is transmitting and the narrowband communication device (145) is concurrently receiving. Responsive to the detecting, the broadband device (105) can gate a broadband transmission (142) to ensure the broadband transmission (142) does not interfere with the proximate narrowband reception (152). In absence of detecting the narrowband transmission (152), the broadband transmission (142) from the broadband device (105) would not be gated.