摘要:
A magnetic head suspension assembly is fabricated with an integral piece which includes a load beam section, a flexure section, a rear mount section and a leaf spring section between the load beam and rear mount. A tongue extends from the load beam to the flexure and has a down-facing load dimple which contacts the non-air bearing surface of an attached air bearing slider. The flexure includes narrow thin legs adjacent to a cutout that delineates the load beam tongue. The head suspension is characterized by a high first bending mode frequency and low pitch and roll stiffness.
摘要:
A magnetic head suspension assembly is fabricated with a load beam formed with a central triangular-type major section, a tongue section at the front end and a rigid mount section at the opposing rear end. The load beam has flanges along the sides of the central major section and the rear mount section. A leaf spring is provided between the central major section and the rear mount section for providing flexibility to the suspension. A flexure that is joined to the load beam is formed with a U-shaped finger surrounded by a cutout at the front end of the flexure. A load dimple that is provided on the flexure is in contact with the load beam. The flexure supports an air bearing slider that pitches and rolls relative to a disk surface. The flexure does not extend beyond the load dimple of the flexure or the front leading edge of the slider. The suspension is characterized by a high first bending mode frequency and low pitch and roll stiffness.
摘要:
A magnetic head suspension assembly is fabricated with an integral piece which includes a load beam section, a flexure section, a rest mount section and a leaf spring section between the load beam and rear mount. A tongue extends from the load beam to the flexure and has a down-facing load dimple which contacts the non-air bearing surface of an attached air bearing slider. The flexure includes narrow thin legs adjacent to a cutout that delineates the load beam tongue. The head suspension is characterised by a high first bending mode frequency and low pitch and roll stiffness.
摘要:
A magnetic head suspension assembly is fabricated with an integral piece which includes a load beam section, a flexure section, a rear mount section and a leaf spring section between the load beam and rear mount. A tongue extends from the load beam to the flexure and has a down-facing load dimple which contacts the non-air bearing surface of an attached air bearing slider. The flexure includes narrow thin legs adjacent to a cutout that delineates the load beam tongue. The head suspension is characterized by a high first bending mode frequency and low pitch and roll stiffness.
摘要:
A magnetic head suspension assembly is fabricated with an integral piece which includes a load beam section, a flexure section, a rear mount section and a leaf spring section between the load beam and rear mount. A tongue extends from the load beam to the flexure and has a down-facing load dimple which contacts the non-air bearing surface of an attached air bearing slider. The flexure includes narrow thin legs adjacent to a cutout that delineates the load beam tongue. The head suspension is characterized by a high first bending mode frequency and low pitch and roll stiffness.
摘要:
The invention provides for improved devices and methods for forming openings in a biological membrane for delivering substances into an animal through the biological membrane for treatment applications, or extracting substances from the animal through the biological membrane for monitoring or other diagnosis applications and for increased transmembrane flux.
摘要:
A method of enhancing the permeability of the skin to an analyte for diagnostic purposes or to a drug for therapeutic purposes is described utilizing microporation and optionally sonic energy and a chemical enhancer. If selected, the sonic energy may be modulated by means of frequency modulation, amplitude modulation, phase modulation, and/or combinations thereof. Microporation is accomplished by (a) ablating the stratum corneum by localized rapid heating of water such that such water is vaporized, thus eroding the cells; (b) puncturing the stratum corneum with a micro-lancet calibrated to form a micropore of up to about 1000 .mu.m in diameter; (c) ablating the stratum corneum by focusing a tightly focused beam of sonic energy onto the stratum corneum; (d) hydraulically puncturing the stratum corneum with a high pressure jet of fluid to form a micropore of up to about 1000 .mu.m in diameter, or (e) puncturing the stratum corneum with short pulses of electricity to form a micropore of up to about 1000 .mu.m in diameter. A dye with an absorption maximum matched to the wavelength of a pulsed light source can be absorbed into the stratum corneum to concentrate the energy of the pulsed light source and aid in ablation of the stratum corneum. Alternatively, a hot wire can be caused to contact the stratum corneum.
摘要:
A system and method for detecting a measuring an analyte in a biological fluid of an animal. A harvesting device (10) is provided suitable for positioning on the surface of tissue of an animal to harvest biological fluid therefrom. The harvesting device (10) comprises an analyte sensor (50) positioned to be contacted by the harvested biological fluid and which generates a measurement signal representative of the analyte. At least one attribute sensor (40) is provided to measure an attribute associated with the biological fluid harvesting operation of the harvesting device (10) or the assay of the biological fluid, and which generates an attribute signal representative of the attribute. Adjustments are made to operational parameters of the harvesting device (10) based on the one or more attributes.
摘要:
A method of enhancing the permeability of the skin to an analyte for diagnostic purposes or to a drug for therapeutic purposes is described utilizing microporation and optionally sonic energy and a chemical enhancer. If selected, the sonic energy may be modulated by means of frequency modulation, amplitude modulation, phase modulation, and/or combinations thereof. Microporation is accomplished by (a) ablating the stratum corneum by localized rapid heating of water such that such water is vaporized, thus eroding the cells; (b) puncturing the stratum corneum with a micro-lancet calibrated to form a micropore of up to about 1000 .mu.m in diameter; (c) ablating the stratum corneum by focusing a tightly focused beam of sonic energy onto the stratum corneum; (d) hydraulically puncturing the stratum corneum with a high pressure jet of fluid to form a micropore of up to about 1000 .mu.m in diameter, or (e) puncturing the stratum corneum with short pulses of electricity to form a micropore of up to about 1000 .mu.m in diameter. A dye with an absorption maximum matched to the wavelength of a pulsed light source can be absorbed into the stratum corneum to concentrate the energy of the pulsed light source and aid in ablation of the stratum corneum. Alternatively, a hot wire can be caused to contact the stratum corneum.