摘要:
A method for obtaining three-dimensional surface points of an object in an object coordinate system having two groups of steps. The method includes providing a set of target positioning features on the object. In a first group of steps, acquiring 2D first images of the object, extracting 2D positioning features; calculating a first set of calculated 3D positioning features; computing first transformation parameters, cumulating the first set of transformed 3D positioning features to provide and augment the set of reference 3D positioning features. In a second group of steps, providing a projected pattern on a surface of the object; acquiring 2D second images of the object, extracting 2D surface points and second sets of 2D positioning features; calculating a set of 3D surface points; calculating a second set of calculated 3D positioning features; computing second transformation parameters, transforming the 3D surface points into transformed 3D surface points.
摘要:
A three dimensional imaging method and device including a ranging sensor that is used to produce a series of profiles of a target surface. The profiles comprise one set of profiles nearly parallel to each other and a further such set of nearly parallel profiles, with the profiles of one set extending at an angle to those of the other set to generate a large number of profile crossings. At the location of each crossing the shortest distance between the profiles is detected and represents an energy contribution between this pair of profiles. An energy function is defined as the sum of the energy contributions of all the crossings. Using a known mathematical model, the profiles are then reoriented relative to each other in such a manner as to minimise this total energy. This process can be repeated for higher precision. The finally reoriented profiles can be used to define the desired three-dimensional shape of the target surface.
摘要:
An auto-referenced sensing device for scanning an object to provide three-dimensional surface points, including: a Light-Emitting Diode (LED) light source emitting light for illuminating and enabling image acquisition of retro-reflective target positioning features provided at a fixed position on the object; a laser pattern projector, additional to the LED light source, for providing a projected laser pattern on a surface of the object for illuminating and enabling image acquisition of dense points between the retro-reflective target positioning features; at least a pair of cameras for simultaneously acquiring a 2D image of the object, the projected laser pattern and the retro-reflective target positioning features are apparent on the image, wherein the simultaneous images contain both positioning measurements from the retro-reflective target positioning features and dense surface measurements from the points enabled by the projected laser pattern.
摘要:
A system, apparatus and method for three-dimensional scanning and digitization of the surface geometry of objects are claimed. The system comprises a hand-held apparatus that is auto-referenced. The system is auto-referenced since it does not need any positioning device to provide the 6 degree of freedom transformations that are necessary to integrate 3D measurements in a global coordinate system while the apparatus is manipulated to scan the surface. The system continuously calculates its own position and orientation from the reflection of a projected laser pattern on an object's surface and 2D positioning features originating from the observation of target positioning features. Using the described system, it is possible to simultaneously build and match a 3D representation of the positioning features while accumulating the 3D surface points describing the surface geometry.
摘要:
There are provided systems and methods for obtaining a three-dimensional surface geometric characteristic and/or texture characteristic of an object. A pattern is projected on a surface of said object. A basic 2D image of said object is acquired; a characteristic 2D image of said object is acquired; 2D surface points are extracted from said basic 2D image, from a reflection of said projected pattern on said object; a set of 3D surface points is calculated in a sensor coordinate system using said 2D surface points; and a set of 2D surface geometric/texture characteristics is extracted.
摘要:
There are provided systems and methods for obtaining a three-dimensional surface geometric characteristic and/or texture characteristic of an object. A pattern is projected on a surface of said object. A basic 2D image of said object is acquired; a characteristic 2D image of said object is acquired; 2D surface points are extracted from said basic 2D image, from a reflection of said projected pattern on said object; a set of 3D surface points is calculated in a sensor coordinate system using said 2D surface points; and a set of 2D surface geometric/texture characteristics is extracted.
摘要:
An electrode assembly for electrotherapy which is usable with a DC current generator which offers divided or biphase emission. The aforementioned assembly contains a conductive component (1) covered with a layer (3) of an adherent material of hydrogel, as well as an absorbent component for supplying water to the adherent material during use of the assembly. The absorbent component is filled with water and is situated between the conductive component (1) and the layer (3) of adherent material of hydrogel, so as to store and supply water to the adherent hydrogel layer.
摘要:
The present invention relates to a method and a system for creating three-dimensional models of objects from sets of arbitrary three-dimensional entities obtained from target surfaces. It also provides an efficient method for individually refining the alignment of curves to improve the accuracy of the surface model with a linear complexity with respect to the number of curves. The principle behind the invention is that a set of three-dimensional entities, at their approximate positions, creates a field from which the surface can be extracted. The field is constructed in a manner such that the three-dimensional entities are attracted toward the extracted surface. This attraction is used to accurately register each three-dimensional entity with respect to extracted surface. Through iterations, both the field and the entity positions are refined.