Detachable atomizing device and container thereof

    公开(公告)号:US11882871B2

    公开(公告)日:2024-01-30

    申请号:US16981755

    申请日:2019-04-10

    摘要: A detachable atomizing device and a container thereof are provided. The container is detachably assembled to an atomizing assembly. The container includes a cup and a flexible film. The cup has an opening arranged at an end thereof, the flexible film covers the opening of the cup, and the flexible film has a tension region and an outer ring-shaped region that surrounds the tension region. The tension region has a plurality of atomizing holes having an average diameter within a range of 1 μm to 20 μm, and the outer ring-shaped region is attached to the cup. When the cup is assembled to the atomizing assembly, a tension value of the tension region of the flexible film is increased from an initial tension value to an atomizing tension value by being pressed from the atomizing assembly, and the atomizing holes of the tension region are configured to allow liquid to pass there-through and to be formed as aerosol mist having an average atomized particle diameter less than a predetermined value. Accordingly, the cup and the flexible film that often need to be replaced are isolated from the atomizing assembly, and an expensive vibrator is disposed in the atomizing assembly, so that the service life of the detachable atomizing device can be extended.

    Nebulization generating apparatus

    公开(公告)号:US11110232B2

    公开(公告)日:2021-09-07

    申请号:US15653530

    申请日:2017-07-19

    摘要: An aerosol generating apparatus is disclosed. The apparatus includes a liquid container, an adaptor detachably engaged with the liquid container, and a driving element accommodated by the adaptor. A perforated membrane, through which a liquid can pass through, is disposed at an exit of the liquid container. Moreover, the perforated membrane faces the driving element. The driving element includes a substrate coupled with a piezoelectric element. The substrate includes an aperture that corresponds to the perforated membrane when the liquid container and the adaptor are engaged so as to receive liquid. Moreover, when the liquid container and the adaptor are engaged, the perforated membrane is in contact with the substrate at the proximity of the aperture, which is about the substrate's center. The adaptor is configured to contact the substrate's periphery only. The resulting apparatus generates aerosol at a desired efficiency with less energy needed.

    Microneedle structure and biodegradable microneedle thereof

    公开(公告)号:US11433225B2

    公开(公告)日:2022-09-06

    申请号:US16862699

    申请日:2020-04-30

    IPC分类号: A61M37/00

    摘要: A microneedle structure and a biodegradable microneedle thereof are provided. The biodegradable microneedle defining a central axis includes a first step portion and a second step portion that is taperedly extending from the first step portion along the central axis. The biodegradable microneedle has a total height along the central axis and a maximum internal diameter along a direction perpendicular to the central axis. The total height is within a range of 380-430 μm, and an aspect ratio defined by the total height divided by the maximum internal diameter is within a range of 1.2-2.2. In a cross section of the biodegradable microneedle having the central axis, a part of the second step portion arranged away from the first step portion having a corner. The corner has an angle within a range of 65-100 degrees and faces toward the first step portion.

    Aerosol generating apparatus
    8.
    发明授权

    公开(公告)号:US11065398B2

    公开(公告)日:2021-07-20

    申请号:US16097272

    申请日:2017-07-19

    摘要: An aerosol generating apparatus is disclosed. The apparatus includes a liquid container, an adaptor and a driving element. The liquid container includes a perforated membrane through which a liquid can permeate. The liquid container further includes a first mating element. The adaptor includes a second mating element. The driving element includes a piezoelectric element coupled to a substrate. The driving element is accommodated by the adaptor and the substrate includes an aperture and a projection. The first and second mating elements are adapted to detachably and slidably mate with each other such that the aperture of the substrate aligns proximately to the center of the perforated membrane. The first and second mating elements are further adapted for relative movement along a sliding axis. The projection is adapted to press against the perforated membrane.