Abstract:
A recessed access device having a gate electrode formed of two or more gate materials having different work functions may reduce the gate-induced drain leakage current losses from the recessed access device. The gate electrode may include a first gate material having a high work function disposed in a bottom portion of the recessed access device and a second gate material having a lower work function disposed over the first gate material and in an upper portion of the recessed access device.
Abstract:
A method for forming an opening within a semiconductor material comprises forming a neck portion, a rounded portion below the neck portion and, in some embodiments, a protruding portion below the rounded portion. This opening may be filled with a conductor, a dielectric, or both. Embodiments to form a transistor gate, shallow trench isolation, and an isolation material separating a transistor source and drain are disclosed. Device structures formed by the method are also described.
Abstract:
A recessed access device having a gate electrode formed of two or more gate materials having different work functions may reduce the gate-induced drain leakage current losses from the recessed access device. The gate electrode may include a first gate material having a high work function disposed in a bottom portion of the recessed access device and a second gate material having a lower work function disposed over the first gate material and in an upper portion of the recessed access device.
Abstract:
A method for forming an opening within a semiconductor material comprises forming a neck portion, a rounded portion below the neck portion and, in some embodiments, a protruding portion below the rounded portion. This opening may be filled with a conductor, a dielectric, or both. Embodiments to form a transistor gate, shallow trench isolation, and an isolation material separating a transistor source and drain are disclosed. Device structures formed by the method are also described.