Low resistivity titanium silicide structures
    1.
    发明申请
    Low resistivity titanium silicide structures 有权
    低电阻率硅化钛结构

    公开(公告)号:US20010054767A1

    公开(公告)日:2001-12-27

    申请号:US09906464

    申请日:2001-07-16

    Inventor: Yongjun Hu

    CPC classification number: H01L21/28052 Y10S977/869 Y10S977/89

    Abstract: Methods and apparatus for forming a conductor layer utilize an implanted matrix to form C54-titanium silicide. Word line stacks formed by the methods of the invention are used in sub-0.2 micron line width applications, interconnects, and silicided source/drain regions, among other applications, and have a lower resistivity and improved thermal stability.

    Abstract translation: 用于形成导体层的方法和装置利用注入的基体来形成C54-硅化钛。 通过本发明的方法形成的字线堆叠被用于0.2微米以下的线宽应用,互连和硅化源极/漏极区域以及其他应用中,并且具有较低的电阻率和改善的热稳定性。

    Conductor layer nitridation
    2.
    发明申请
    Conductor layer nitridation 有权
    导体层氮化

    公开(公告)号:US20040238845A1

    公开(公告)日:2004-12-02

    申请号:US10881630

    申请日:2004-06-30

    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.

    Abstract translation: 用于形成字线堆叠的方法和装置包括形成耦合在底部硅层和导体层之间的薄氮化物层。 在另一个实施例中,扩散阻挡层耦合在薄氮化物层和底部硅层之间。 通过在含氮环境中退火氧化硅膜来形成薄氮化物层。

    Process for forming a diffusion barrier material nitride film
    3.
    发明申请
    Process for forming a diffusion barrier material nitride film 失效
    用于形成扩散阻挡材料氮化物膜的工艺

    公开(公告)号:US20040157429A1

    公开(公告)日:2004-08-12

    申请号:US10771828

    申请日:2004-02-04

    Inventor: Yongjun Hu

    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal silicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.

    Abstract translation: 公开了一种用于制造光滑并具有大的扩散阻挡材料的氮化物晶粒的膜的方法。 在该过程中,通过物理气相沉积在氮气环境中沉积扩散阻挡材料的氮化物。 选择环境氮含量,使得扩散阻挡材料的氮化物核均匀分布。 然后在氮环境中进行晶粒生长步骤,以生长扩散阻挡材料的大的氮化物晶粒的膜。 还公开了一种适合于MOS存储器电路的堆叠结构,该MOS存储器电路结合了具有覆盖扩散阻挡材料的氮化物的轻度氮化难熔金属硅化物扩散阻挡层。 堆叠结构根据扩散阻挡材料氮化物膜制造工艺形成,并且具有高热稳定性,低电阻率,远距离聚集阻挡和高表面光滑度。

    Antireflective coating layer
    4.
    发明申请
    Antireflective coating layer 审中-公开
    防反射涂层

    公开(公告)号:US20040108563A1

    公开(公告)日:2004-06-10

    申请号:US10641330

    申请日:2003-08-14

    Inventor: Yongjun Hu

    Abstract: Antireflective structures comprise a metal silicon nitride composition in a layer that is superposed upon a layer to be patterned that would otherwise cause destructive reflectivity during photoresist patterning. The antireflective structure has the ability to absorb light used during photoresist patterning. The antireflective structure also has the ability to scatter unabsorbed light into patterns and intensities that are ineffective to photoresist material exposed to the patterns and intensities. Preferred antireflective structures comprise a semiconductor substrate having thereon at least one layer of a silicon-containing metal or silicon-containing metal nitride. One preferred material for the inventive antireflective layer includes metal silicon nitride ternary compounds of the general formula MxSiyNz wherein M is at least one transition metal, x is less than y, and z is in a range from about 0 to about 5y. Composite antireflective layers made of metal silicide binary compounds or metal silicon nitride ternary compounds may also be fashioned depending upon a specific application.

    Abstract translation: 抗反射结构包括叠层在待图案化层上的层中的金属氮化硅组合物,否则在光致抗蚀剂图案化期间将导致破坏性的反射率。 抗反射结构具有吸收光致抗蚀剂图案化期间使用的光的能力。 抗反射结构还具有将未吸收光散射到对暴露于图案和强度的光致抗蚀剂材料无效的图案和强度的能力。 优选的抗反射结构包括其上具有至少一层含硅金属或含硅金属氮化物的半导体衬底。 用于本发明的抗反射层的一种优选的材料包括通式为M x S y N zz的金属氮化硅三元化合物,其中M为至少一种过渡金属,x小于y,z在约0至约5y的范围内。 由金属硅化物二元化合物或金属氮化硅三元化合物制成的复合抗反射层也可以根据具体应用来形成。

    Process for forming a diffusion barrier material nitride film
    6.
    发明申请
    Process for forming a diffusion barrier material nitride film 失效
    用于形成扩散阻挡材料氮化物膜的工艺

    公开(公告)号:US20030045046A1

    公开(公告)日:2003-03-06

    申请号:US10271259

    申请日:2002-10-15

    Inventor: Yongjun Hu

    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal suicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.

    Abstract translation: 公开了一种用于制造光滑并具有大的扩散阻挡材料的氮化物晶粒的膜的方法。 在该过程中,通过物理气相沉积在氮气环境中沉积扩散阻挡材料的氮化物。 选择环境氮含量,使得扩散阻挡材料的氮化物核均匀分布。 然后在氮环境中进行晶粒生长步骤,以生长扩散阻挡材料的大的氮化物晶粒的膜。 还公开了一种适合于MOS存储器电路的堆叠结构,该MOS存储器电路结合了具有覆盖扩散阻挡材料的氮化物的轻微氮化难熔金属硅化物扩散阻挡层。 堆叠结构根据扩散阻挡材料氮化物膜制造工艺形成,并且具有高热稳定性,低电阻率,远距离聚集阻挡和高表面光滑度。

    Process for forming a nitride film
    7.
    发明申请
    Process for forming a nitride film 失效
    氮化膜形成方法

    公开(公告)号:US20030038370A1

    公开(公告)日:2003-02-27

    申请号:US10271126

    申请日:2002-10-15

    Inventor: Yongjun Hu

    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal silicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.

    Abstract translation: 公开了一种用于制造光滑并具有大的扩散阻挡材料的氮化物晶粒的膜的方法。 在该过程中,通过物理气相沉积在氮气环境中沉积扩散阻挡材料的氮化物。 选择环境氮含量,使得扩散阻挡材料的氮化物核均匀分布。 然后在氮环境中进行晶粒生长步骤,以生长扩散阻挡材料的大的氮化物晶粒的膜。 还公开了一种适合于MOS存储器电路的堆叠结构,该MOS存储器电路结合了具有覆盖扩散阻挡材料的氮化物的轻度氮化难熔金属硅化物扩散阻挡层。 堆叠结构根据扩散阻挡材料氮化物膜制造工艺形成,并且具有高热稳定性,低电阻率,远距离聚集阻挡和高表面光滑度。

    Low angle, low energy physical vapor deposition of alloys
    8.
    发明申请
    Low angle, low energy physical vapor deposition of alloys 失效
    低角度,低能量物理气相沉积合金

    公开(公告)号:US20010010405A1

    公开(公告)日:2001-08-02

    申请号:US09826661

    申请日:2001-04-05

    Inventor: Yongjun Hu

    Abstract: An alloy or composite is deposited in a recess feature of a semiconductor substrate by sputtering an alloy or composite target into a recess, to form a first layer of deposited material. The first layer of deposited material is resputtered at a low angle and low energy, to redeposit the first layer of deposited material onto the bottom of the recess as a second layer of deposited material having a different stoichiometry than that of the first deposited material. In a further embodiment, a sputtering chamber ambient is comprised of argon and nitrogen. In yet a further embodiment, the resputtering step is followed by deposition of at least one layer of material with a different stoichiometry than that of the second deposited layer, to form a nullgradednull stoichiometry of material deposited in the recess.

    Abstract translation: 通过将合金或复合靶溅射到凹槽中,将合金或复合材料沉积在半导体衬底的凹陷特征中,以形成第一沉积材料层。 第一沉积材料层以低角度和低能量被重新投射,以将第一沉积材料层重新沉积到凹槽的底部上,作为具有不同于第一沉积材料的化学计量的第二沉积材料层。 在另一实施例中,溅射室环境由氩和氮组成。 在又一个实施例中,再溅射步骤之后是沉积具有与第二沉积层不同的化学计量比的至少一层材料,以形成沉积在凹槽中的材料的“分级”化学计量。

    Antireflective coating layer
    9.
    发明申请
    Antireflective coating layer 有权
    防反射涂层

    公开(公告)号:US20020105043A1

    公开(公告)日:2002-08-08

    申请号:US10003522

    申请日:2001-10-31

    Inventor: Yongjun Hu

    Abstract: Antireflective structures according to the present invention comprise a metal silicon nitride composition in a layer that is superposed upon a layer to be patterned that would other wise cause destructive reflectivity during photoresist patterning. The antireflective structure has the ability to absorb light used during photoresist patterning. The antireflective structure also has the ability to scatter unabsorbed light into patterns and intensities that are ineffective to photoresist material exposed to the patterns and intensities. Preferred antireflective structures of the present invention comprise a semiconductor substrate having thereon at least one layer of a silicon-containing metal or silicon-containing metal nitride. The semiconductor substrate will preferably have thereon a feature size with width dimension less than about 0.5 microns, and more preferably less than about 0.25 microns. One preferred material for the inventive antireflective layer includes metal silicon nitride ternary compounds of the general formula MxSiyNz wherein M is at least one transition metal, x is less than y, and z is in a range from about 0 to about 5y. Preferably, the Si will exceed M by about a factor of two. Addition of N is controlled by the ratio in the sputtering gas such as Ar/N. Tungsten is a preferred transition metal in the fabrication of the inventive antireflective coating. A preferred tungsten silicide target will have a composition of silicon between 1 and 4 in stoichiometric ratio to tungsten. Composite antireflective layers made of metal silicide binary compounds or metal silicon nitride ternary compounds may be fashioned according to the present invention depending upon a specific application.

    Abstract translation: 根据本发明的抗反射结构包括层叠的金属氮化硅组合物,该层被叠加在待图案化的层上,这将在光致抗蚀剂图案化期间另外引起破坏性的反射率。 抗反射结构具有吸收光致抗蚀剂图案化期间使用的光的能力。 抗反射结构还具有将未吸收光散射到对暴露于图案和强度的光致抗蚀剂材料无效的图案和强度的能力。 本发明优选的抗反射结构包括其上具有至少一层含硅金属或含硅金属氮化物的半导体衬底。 半导体衬底将优选地具有宽度尺寸小于约0.5微米,更优选小于约0.25微米的特征尺寸。 用于本发明的抗反射层的一种优选的材料包括通式为M x S y N zz的金属氮化硅三元化合物,其中M为至少一种过渡金属,x小于y,z在约0至约5y的范围内。 优选地,Si将超过M约2倍。 N的添加由溅射气体中的比例如Ar / N控制。 在本发明的抗反射涂层的制造中,钨是优选的过渡金属。 优选的硅化钨靶将具有与钨的化学计量比为1至4的硅组成。 由金属硅化物二元化合物或金属氮化硅三元化合物制成的复合抗反射层可根据具体应用根据本发明制成。

Patent Agency Ranking