Abstract:
Techniques for tenant management of virtualized computing resources are described. Virtualized computing resources are allocated to a tenant who is allowed to request access to the allocated virtualized computing resources. A request is received for launch of a virtual machine instance based on the allocated virtualized computing resources. In response to the request, a secure enclave is instantiated and information is obtained that is indicative of the host computing environment and the secure enclave. The information is sent to the tenant, and an indication is received from the tenant to launch the virtual machine based on an independent attestation by the tenant based on the sent information. The virtual machine is launched in response to the indication.
Abstract:
A virtual secure mode is enabled for a virtual machine operating in a computing environment that is associated with a plurality of different trust levels. First, a virtual secure mode image is loaded into one or more memory pages of a virtual memory space of the virtual machine. Then, the one or more memory pages of the virtual memory space are made inaccessible to one or more trust levels having a relatively lower trust level than a launching trust level that is used by a virtual secure mode loader to load the virtual secure mode image. A target virtual trust level is also enabled on a launching virtual processor for the virtual machine that is higher than the launching trust level.
Abstract:
A virtual secure mode is enabled for a virtual machine operating in a computing environment that is associated with a plurality of different trust levels. First, a virtual secure mode image is loaded into one or more memory pages of a virtual memory space of the virtual machine. Then, the one or more memory pages of the virtual memory space are made inaccessible to one or more trust levels having a relatively lower trust level than a launching trust level that is used by a virtual secure mode loader to load the virtual secure mode image. A target virtual trust level is also enabled on a launching virtual processor for the virtual machine that is higher than the launching trust level.
Abstract:
A facility for booting a virtual machine hosted on a host is described. In one example facility, the facility boots the virtual machine in accordance with a policy instance associated with the virtual machine. As part of the booting, the facility extracts information needed to complete the booting from a virtual trusted platform module associated with the virtual machine, the extraction based upon the policy instance associated with the virtual machine. At the completion of the booting, the facility copies contents of a policy instance associated with the host into the policy instance associated with the virtual machine.
Abstract:
A facility for booting a virtual machine hosted on a host is described. In one example facility, the facility boots the virtual machine in accordance with a policy instance associated with the virtual machine. As part of the booting, the facility extracts information needed to complete the booting from a virtual trusted platform module associated with the virtual machine, the extraction based upon the policy instance associated with the virtual machine. At the completion of the booting, the facility copies contents of a policy instance associated with the host into the policy instance associated with the virtual machine.
Abstract:
A virtual secure mode is enabled for a virtual machine operating in a computing environment that is associated with a plurality of different trust levels. First, a virtual secure mode image is loaded into one or more memory pages of a virtual memory space of the virtual machine. Then, the one or more memory pages of the virtual memory space are made inaccessible to one or more trust levels having a relatively lower trust level than a launching trust level that is used by a virtual secure mode loader to load the virtual secure mode image. A target virtual trust level is also enabled on a launching virtual processor for the virtual machine that is higher than the launching trust level.
Abstract:
A virtual secure mode is enabled for a virtual machine operating in a computing environment that is associated with a plurality of different trust levels. First, a virtual secure mode image is loaded into one or more memory pages of a virtual memory space of the virtual machine. Then, the one or more memory pages of the virtual memory space are made inaccessible to one or more trust levels having a relatively lower trust level than a launching trust level that is used by a virtual secure mode loader to load the virtual secure mode image. A target virtual trust level is also enabled on a launching virtual processor for the virtual machine that is higher than the launching trust level.
Abstract:
Deploying an encrypted entity on a trusted entity is illustrated herein. A method includes, at a trusted entity, wherein the trusted entity is trusted by an authority as a result of providing a verifiable indication of certain characteristics of the trusted entity meeting certain requirements, receiving an encrypted entity from an untrusted entity. The untrusted entity is not trusted by the authority. At the trusted entity, a trust credential from the authority is used to obtain a key from a key distribution service. The key distribution service is trusted by the authority. The key is used to decrypt the encrypted entity to allow the encrypted entity to be deployed at the trusted entity.