Liquid alkali metal with dispersed nanoparticles and method of manufacturing the same
    7.
    发明授权
    Liquid alkali metal with dispersed nanoparticles and method of manufacturing the same 有权
    具有分散纳米颗粒的液态碱金属及其制造方法

    公开(公告)号:US08246853B2

    公开(公告)日:2012-08-21

    申请号:US13019447

    申请日:2011-02-02

    IPC分类号: C09K5/00

    摘要: The present invention relates to maintaining the fundamental physical properties of a liquid alkali metal with dispersed nanoparticles which is such that nanoparticles are uniformly dispersed and mixed in a liquid alkali metal used in heat exchange, cooling and other applications, and suppressing the reaction of the liquid alkali metal with dispersed nanoparticles. Provided is a method of manufacturing a liquid alkali metal with dispersed nanoparticles by dispersing nanoparticles in a liquid alkali metal. In this method, the nanoparticles are made of a metal having a large atomic bonding due to a combination with the liquid alkali metal compared to the atomic bonding of atoms of the liquid alkali metal and a metal having a large amount of charge transfer is used in the nanoparticles. The liquid alkali metal is selected from sodium, lithium and sodium-potassium alloys, and the nanoparticles to be dispersed are made of transition metals, such as titanium, vanadium, chromium, iron, cobalt, nickel and copper.

    摘要翻译: 本发明涉及保持具有分散的纳米颗粒的液态碱金属的基本物理性质,使得纳米颗粒均匀地分散和混合在用于热交换,冷却和其它应用的液态碱金属中,并且抑制液体的反应 碱金属与分散的纳米粒子。 提供了通过将纳米粒子分散在液态碱金属中制造具有分散纳米粒子的液态碱金属的方法。 在该方法中,与液态碱金属的原子的原子键合和具有大量电荷转移的金属相比,纳米粒子由于与液态碱金属的组合而具有大的原子键合的金属制成, 纳米颗粒。 液态碱金属选自钠,锂和钠 - 钾合金,待分散的纳米颗粒由钛,钒,铬,铁,钴,镍和铜等过渡金属制成。

    NANOPARTICLE MANUFACTURING DEVICE AND NANOPARTICLE MANUFACTURING METHOD AND METHOD OF MANUFACTURING NANOPARTICLE-DISPERSED LIQUID ALKALI METAL
    8.
    发明申请
    NANOPARTICLE MANUFACTURING DEVICE AND NANOPARTICLE MANUFACTURING METHOD AND METHOD OF MANUFACTURING NANOPARTICLE-DISPERSED LIQUID ALKALI METAL 审中-公开
    纳米材料制造装置和纳米材料制造方法及制备纳米颗粒分散液体碱金属的方法

    公开(公告)号:US20110209578A1

    公开(公告)日:2011-09-01

    申请号:US13014120

    申请日:2011-01-26

    IPC分类号: B22F9/04 C22C1/02

    摘要: A nanoparticle manufacturing device capable of particle size control of nanoparticles made of a raw material metal powder and control of the occurrence condition of chaining of nanoparticles and of necking. The device 1 is provided for manufacturing nanoparticles by heating and melting a mixture of a raw material metal powder and a carrier gas in a heating space, cooling the mixture in a cooling space and collecting the mixture in a collection space. The heating space, the cooling space and the collection space form a continuous flow path without a back flow, and the cross-sectional area of the collection space is set at a large value compared to the cross-sectional area of the heating space and the cooling space. Further, there is provided a method of manufacturing a nanoparticle-dispersed liquid alkali metal by dispersing nanoparticles in a liquid alkali metal. A liquid alkali metal obtained by dispersing nanoparticles in the liquid alkali metal is manufactured by performing a rough dispersion step of stirring nanoparticles in the liquid alkali metal by a physical effect and a dispersion step of dispersing nanoparticles in the liquid alkali metal by irradiating the liquid alkali metal with ultrasonic waves after the rough dispersion step.

    摘要翻译: 一种纳米颗粒制造装置,其能够对由原料金属粉末制成的纳米颗粒进行粒度控制,并且控制纳米颗粒的链接和颈缩的发生状况。 设备1用于通过在加热空间中加热和熔化原料金属粉末和载气的混合物来制造纳米颗粒,在冷却空间中冷却混合物并将混合物收集在收集空间中。 加热空间,冷却空间和收集空间形成连续的流动路径而没有回流,并且与加热空间的横截面积相比,收集空间的横截面面积被设定为大的值, 冷却空间。 此外,提供了通过将纳米颗粒分散在液态碱金属中制造分散纳米颗粒的液态碱金属的方法。 通过将液态碱金属中的纳米粒子分散在液态碱金属中而得到的液态碱金属是通过进行通过物理效应搅拌纳米颗粒的分散步骤和通过照射液态碱将纳米颗粒分散在液态碱金属中的分散步骤来制备的 在粗分散步骤之后用超声波金属。

    Fluid in liquid state containing dispersed nano-particles of metal or the like
    9.
    发明授权
    Fluid in liquid state containing dispersed nano-particles of metal or the like 有权
    含有分散的金属纳米颗粒等的液态液体

    公开(公告)号:US07326368B2

    公开(公告)日:2008-02-05

    申请号:US11104406

    申请日:2005-04-13

    IPC分类号: H01B1/02 H01B1/08 C09K5/00

    CPC分类号: C09K5/10 G21C15/28 Y02E30/35

    摘要: Nano-particles 1 of a metal or the like are dispersed in a liquid fluid 2. Thereby, the reactivity or toxicity of the liquid fluid can be reduced when the liquid fluid has reactivity or toxicity. The flow resistance of the liquid fluid can be raised, and the leakage of the liquid fluid from minute cracks can be reduced. By using the liquid fluid as a heat transfer medium of a heat exchanger, the heat transfer performance equivalent to or higher than the heat transfer performance of the original heat exchanger can be obtained.

    摘要翻译: 金属等的纳米粒子1分散在液体流体2中。 因此,当液体流体具有反应性或毒性时,可以降低液体流体的反应性或毒性。 可以提高液体流体的流动阻力,并且可以减少液体流体从微小裂纹泄漏。 通过使用液体流体作为热交换器的传热介质,可以获得等于或高于原始热交换器的传热性能的传热性能。

    Method and apparatus for producing metallic ultrafine particles
    10.
    发明申请
    Method and apparatus for producing metallic ultrafine particles 审中-公开
    金属超微粒子的制造方法和装置

    公开(公告)号:US20070062333A1

    公开(公告)日:2007-03-22

    申请号:US11401411

    申请日:2006-04-11

    IPC分类号: B22F9/12

    摘要: An object of the present invention is to efficiently produce ultrafine particles having such a small diameter as 50 nm or less, a narrow range of size distribution, and a non-oxidation surface. According to the present invention, the metallic ultrafine particles are produced by dropping a raw metallic powder onto a controllably heated evaporating surface in a decompressed inert gas; instantly evaporating the raw metallic powder to form the ultrafine particle; and condensing and depositing the ultrafine particle on a trapping surface arranged above the evaporating surface. The raw metallic powder is any one of a single metal, an alloy and an intermetallic compound, preferably has an average particle diameter controlled to 500 μm or smaller so that the powder can be instantly evaporated, and is preferably supplied by a minute amount.

    摘要翻译: 本发明的目的是有效地制造具有50nm以下的小直径,窄范围的尺寸分布和非氧化面的超微粒子。 根据本发明,通过在减压惰性气体中将原料金属粉末滴加到可控加热的蒸发表面上来制造金属超微粒子; 立即蒸发原料金属粉末,形成超细颗粒; 并将超细颗粒冷凝并沉积在布置在蒸发表面上方的捕集表面上。 原料金属粉末是单一金属,合金和金属间化合物中的任一种,优选将平均粒径控制在500μm以下,使得粉末能够瞬间蒸发,优选以微量的量供给。