Abstract:
The present invention is a multipass unipoint optical cell used for the improved analysis of samples by transmission, reflection, Raman or fluorescence spectroscopy by the multiple reimaging of light through the same analysis point. The cell comprises two or more identical optical reimaging elements each consisting of two symmetrically opposing, identical, confocal, and coaxial parabolic reflective surfaces. These reimaging optical elements can be arranged around the common focal point, which thus becomes the analysis point, to form different multipass unipoint optical cell configurations, all the passes crossing in the analysis point where a sample is brought to interact with light, the effect of said interaction being enhanced in proportion to the number of passes.
Abstract:
An optical reimaging element comprising: a first off-axis parabolic mirror having only the portion of the mirror surface below the first plane that passes through its focal point and is perpendicular to the axis of the first parabola associated with the first mirror, the portion of the first mirror being on the same side of the first plane as the vertex of the first parabola; a second off axis parabolic mirror identical to the first mirror also having only the portion of the mirror surface below the second plane that passes through its focal point and is perpendicular to the axis of the second parabola associated with the second mirror, the portion of the second mirror being on the same side of the second plane as the vertex of the second parabola; and the first and second mirrors being in optical communication with each other so that their first and second planes coincide and so that their parabolic mirror surfaces are symmetrically opposing, confocal, and coaxial thereby having the property that a ray of light coming from the common focal point of the parabolic mirrors and incident onto one of the parabolic mirrors reflects to the other parabolic mirror wherein it reflects back to the focal point, but at an angle with the direction in which it left the focal point. An optical reimaging element comprising: a material, the material comprising: a top face; a bottom face; a first side face; a second side face; a third side face; and where the first and second of the side faces are in the shape of two symmetrically opposing, confocal, and coaxial parabolic surfaces so that the common axis of the parabolic surfaces is parallel and midway between the top and bottom faces and the third side face is spherical with the center of curvature coincident with the common focal point of the parabolic surfaces so that any ray of light originating from the common focal point and directed to the element is incident normal to the third face, transmits into the element without changing direction, is incident on one of the parabolic surfaces, reflects by total internal reflection to the other of the two parabolic surfaces, is reflected again by total internal reflection to come at normal incidence to the third face, transmits out of the element without changing direction and returns to the common focal point at an angle to the direction in which it left the focal point.
Abstract:
The multiple internal reflection accessories for internal reflection spectrometry described here utilizes a novel approach to match the round beam size and shape from a conventional FT-IR spectrometer to the typical rectangular IRE aperture. Its transfer optics distort the beam entering and exiting the IRE so that the cross-section of the beam is matched to that of the standard rectangular aperture of the IRE. This configuration reduces energy losses, eliminates the need to aluminize the edges of the crystal, and reduces spurious peaks from the adhesive or O-rings used to conventionally mount the crystal.
Abstract:
An attachment or accessory for performing diffuse reflectance spectroscopy on a conventional UV-VIS-IR spectrophotometer. The attachment includes a removable body having a hemispherical mirrored interior surface positioned over the sample, and containing windows for entrance and exit of radiation. Multiple sampling of the same sample area enhances the quality of the spectrophotometer output.
Abstract:
A floating monitoring apparatus and system comprising: a base; a first flotation device attached to the base and located generally below the base, the flotation device configured to float on a surface of water; a light support member extending downward from the base, and configured to be at least partially below the surface of water; a camera attached to the base and configured to be aimed to capture images of a target below the base, where the camera is generally kept above the surface of the water; a light source attached to the light support member, and configured to direct light to illuminate the target, the lights located below the surface of the water.
Abstract:
A floating monitoring apparatus comprising: a base; a first flotation device attached to the base and located generally below the base, the flotation device configured to float on a surface of water; a light support member extending downward from the base, and configured to be at least partially below the surface of water; a camera attached to the base and configured to be aimed to capture images of a target below the base, where the camera is generally kept above the surface of the water; a light source attached to the light support member, and configured to direct light to illuminate the target, the lights located below the surface of the water. A floating monitoring system comprising: a volume of water; a base, configured to be located generally above the surface of the volume of water; a first flotation device attached to the base and located generally below the base, the flotation device configured to float on the surface of water; a light support member extending downward from the base, and configured to be at least partially below the surface of water; a camera attached to the base and configured to be aimed to capture images of a target below the base, where the camera is generally kept above the surface of the water; a light source attached to the light support member, and configured to direct light to illuminate the target, the lights located below the surface of the water; a rod, with a first end and a second end, the first end of the rod rotatably attached to the base; a structure located outside of the volume of water, the second end of the rod rotatably attached to the structure. A monitoring apparatus comprising: a base configured to sit on top of a jar; a first side extending downwardly from the base, and configured to be located on the outside of the jar; a second side extending downwardly from the base, and configured to be located on the outside of the jar; a third side extending downwardly from the base, and configured to be located on the outside of the jar; a camera housing located on the first side; a camera located in the camera housing, the camera configured to view a target located inside the jar; a light source located on the second side, the light source configured to illuminate a target inside the jar; where the light source and camera are configured such that light emanating from the light source is generally orthogonal to a field of view of the camera.
Abstract:
A crystal assembly for optical analyzation of samples includes a first crystal member and a second crystal member, the latter of which is preferably a diamond. The first and second crystal members, which have substantially the same index of refraction for infrared energy, are coupled together at an optically transmitting interface. This interface may be formed by crystal surfaces in intimate contact with one another or by a third crystal member positioned therebetween. The first crystal member has at least one circumferential sidewall focusing surface for redirecting infrared energy within the first crystal member to and from a focal ring or focal plane at or near the optical interface. The focused infrared energy transmitted from the first crystal member is internally reflected within the second crystal member to obtain encoding specific to a sample in contact with a surface of the second crystal member. The encoded infrared energy is then reflected back into the first crystal member for ultimate transmission to a detector.
Abstract:
A crystal assembly for optical analyzation of samples includes a first crystal member and a second crystal member, the latter of which is preferably a diamond. The first and second crystal members, which have substantially the same index of refraction for infrared energy, are coupled together at an optically transmitting interface. This interface may be formed by crystal surfaces in intimate contact with one another or by a third crystal member positioned therebetween. The first crystal member has at least one circumferential sidewall focusing surface for redirecting infrared energy within the first crystal member to and from a focal ring or focal plane at or near the optical interface. The focused infrared energy transmitted from the first crystal member is internally reflected within the second crystal member to obtain encoding specific to a sample in contact with a surface of the second crystal member. The encoded infrared energy is then reflected back into the first crystal member for ultimate transmission to a detector.
Abstract:
A compact, battery powered video imaging device for use in XYZ stage equipped machines (such as milling machines, jig borers, coordinate measuring machines, etc.) that mounts into the spindle of such a machine and displays a magnified image of a part on the XYZ stage of the machine on an integrated video monitor such as a Liquid Crystal Display panel equipped with crosshairs or similar reference marks. The XYZ stage of the host machine is used to move the part so that various features of the part are brought into the crosshairs of the video monitor. In such a way the XYZ coordinates of various features of the part with respect to a selected reference feature, displayed on the host machine's position readout, can be obtained. This procedure can be used to aid work piece setup, measure parts in-process without disturbing the setup, or to inspect finished parts for dimensional accuracy.If a known good part or a specially manufactured precision gage plate is inspected by a host machine in such a way, the result is reflective of the accuracy of the XYZ stage and position display of the host machine and can be used to qualify the host machine for positional accuracy.
Abstract:
An apparatus and method for spectroscopic or radiometric analysis of solid, liquid, or gas samples includes first and second optically transmitting materials. The first optically transmitting material has selected bulk optical transmission and index of refraction properties which enable infrared radiation transmission therethrough across selected optical transmission ranges. The first optically transmitting material is of a type which normally has chemical or mechanical degradation when in contact with the sample during spectroscopic or radiometric analysis. The second optically transmitting material is preferably a wafer or thin sheet in optical/mechanical contact with the first optically transmitting material. The second material is designed to be located between the first optically transmitting material and the sample all held in a fixture or fixtures to prevent the sample from contacting the first material during spectroscopic or radiometric analysis of the sample. The second optically transmitting material: i) is chemically resistant to the sample, ii) is constructed of a material which prevents significant physical degradation of the second material when the sample contacts the second material, iii) has selected optical transmission and index of refraction properties which enable optical transmission from the first material to the second material, or from the second material to the first material, without significant transmission or reflectivity losses, and iv) is contained in a cell or fixture that prevents the sample from contacting the first optically transmitting material during the spectroscopic or radiometric analysis.