Abstract:
In a display panel and a display apparatus having the display panel, the display panel includes array and opposite substrates. The array substrate includes display and peripheral areas. Gate and source lines are formed in the display area. A gate driving part and first and second clock lines are formed in the peripheral area. The gate driving part outputs gate signals to the gate line. The first and second clock lines respectively transmit first and second clock signals to the gate driving part. The opposite substrate is combined with the array substrate and includes a common electrode layer. The common electrode layer has an opening portion patterned to expose the first and second clock lines. The exposed portions of the first and second clock lines have substantially the same area. Thus, delays of the gate signals may be minimized and distortion of the gate signals may be prevented.
Abstract:
A display system includes a display panel having a plurality of pixel units, each of the pixel units having first and second divided pixel parts; a first driver for applying a first gate signal to the first divided pixel part; and a second driver for applying a second gate signal to the second divided pixel part, wherein the first and second drivers are integrally formed in the display panel and apply the first and second gate signals to be at least partially time-overlapped through independent driving.
Abstract:
A gate driving circuit having improved driving capability and maintaining reliability even after a prolonged period of use includes a shift register having a plurality of stages cascaded to one another, each of the plurality of stages including a pull-up unit, a pull-down unit, a discharging unit, and a holding unit, wherein at least one of the discharging unit and the holding unit includes an amorphous silicon thin film transistor and a polysilicon thin film transistor connected in parallel to each other.
Abstract:
In a gate driving circuit and a display apparatus, the gate driving circuit comprises a plurality of stages. At least one of the stages comprises a pull-up section responsive to a first node signal; a pull-down section responsive to a second input signal; a discharging section discharging the first node signal in response to the second input signal; a first holding section responsive to the first clock signal, maintaining the first node signal at the off-voltage; and a second holding section responsive to the second clock signal, maintaining the first node signal at the off-voltage. The second holding section has a greater transistor width-to-length ratio than the first holding section. Therefore, an abnormal gate-on signal is less likely to occur, reducing driving defects of the display apparatus.
Abstract:
A liquid crystal display includes a first gate electrode, a storage electrode having a body and an extension, a first semiconductor formed on a gate insulating layer, a first drain electrode formed on the first semiconductor, separated from a first source electrode, and having an end portion overlapping the first gate electrode, and an expansion overlapping the body of the storage electrode and distanced from the end portion with a connection connecting the end portion and the expansion and overlapping the extension of the storage electrode, a passivation layer having a contact hole exposing the expansion of the first drain electrode, and a first field-generating electrode connected to the first drain electrode through the contact hole.
Abstract:
A gate driving device includes a plurality of stages, a first dummy stage connected to the plurality of stages and a second dummy stage connected to the first dummy stage. Stages of the plurality of stages are cascaded. The first dummy stage includes a first charge unit which receives a first input signal from a previous stage of the plurality of stages and is thereby charged, and a first pull-up transistor which outputs a clock signal when the first charge unit reaches a first charge level. The second dummy stage includes a second charge unit which receives a second input signal from the first dummy stage and is thereby charged, and a second pull-up transistor which outputs the clock signal when the second charge unit reaches a second charge level higher than the first charge level.
Abstract:
A display apparatus includes a gate driver which sequentially outputs a gate signal at a high state in response to a gate control signal and a data driver which converts image data into a data signal in response to a data control signal. The display apparatus further includes a display panel which includes a plurality of gate lines which sequentially receive the gate signal, a plurality of data lines which receive the data signal and a plurality of pixels connected to the gate and data lines and which receive the data signal in response to the gate signal to display an image. The polarity of the data signal is inverted after the gate signal transitions to a low state.
Abstract:
In a display panel and a display apparatus having the display panel, the display panel includes array and opposite substrates. The array substrate includes display and peripheral areas. Gate and source lines are formed in the display area. A gate driving part and first and second clock lines are formed in the peripheral area. The gate driving part outputs gate signals to the gate line. The first and second clock lines respectively transmit first and second clock signals to the gate driving part. The opposite substrate is combined with the array substrate and includes a common electrode layer. The common electrode layer has an opening portion patterned to expose the first and second clock lines. The exposed portions of the first and second clock lines have substantially the same area. Thus, delays of the gate signals may be minimized and distortion of the gate signals may be prevented.
Abstract:
In a gate driving circuit and a display apparatus, the gate driving circuit comprises a plurality of stages. At least one of the stages comprises a pull-up section responsive to a first node signal; a pull-down section responsive to a second input signal; a discharging section discharging the first node signal in response to the second input signal; a first holding section responsive to the first clock signal, maintaining the first node signal at the off-voltage; and a second holding section responsive to the second clock signal, maintaining the first node signal at the off-voltage. The second holding section has a greater transistor width-to-length ratio than the first holding section. Therefore, an abnormal gate-on signal is less likely to occur, reducing driving defects of the display apparatus.
Abstract:
A gate driving circuit that may be capable of improving driving margin and maintaining reliability even after long use, and a display device having the gate driving circuit. The gate driving circuit includes a shift register having a plurality of stages dependently connected to one another, wherein each stage includes a pull-up unit outputting a first clock signal as a gate signal in response to a signal of a first node, to which a first input signal is applied, a pull-down unit discharging the gate signal to a gate-off voltage in response to a second input signal, a discharging unit discharging the signal of the first node to the gate-off voltage in response to the second input signal, and a holding unit maintaining the signal of the first node at the gate-off voltage in response to a delay signal of the first clock signal.