摘要:
A driving apparatus for a liquid crystal display (LCD) is provided. The driving apparatus includes a plurality of data driving ICs and a control board. The data driving ICs are used for receiving and transmitting a clock signal, a plurality of data signals and a first reference voltage from the 1st data driving IC to the last data driving IC in series. The control board is used for providing the clock signal, the data signals and the first reference voltage, and changing the first reference voltage received by each data driving IC according to a variation of the clock signal and the data signals transmitted between the data driving ICs, so that the operation frequency of the data driving ICs is unrestricted.
摘要:
A driving apparatus for a liquid crystal display (LCD) is provided. The driving apparatus includes a plurality of data driving ICs and a control board. The data driving ICs are used for receiving and transmitting a clock signal, a plurality of data signals and a first reference voltage from the 1st data driving IC to the last data driving IC in series. The control board is used for providing the clock signal, the data signals and the first reference voltage, and changing the first reference voltage received by each data driving IC according to a variation of the clock signal and the data signals transmitted between the data driving ICs, so that the operation frequency of the data driving ICs is unrestricted.
摘要:
A control signal generation method of integrated gate driver circuit includes the steps of: providing one gate control signal to an integrated gate driver circuit; and generating a plurality of internal control signals by the integrated gate driver circuit according to on the gate control signal to control internal operations of the integrated gate driver circuit. Furthermore, an integrated gate driver circuit is adapted to receive one external gate control signal. The integrated gate driver circuit includes an internal control signal generation circuit for generating a plurality of internal control signals according to the external gate control signal to control internal operations of the integrated gate driver circuit. In addition, a liquid crystal display device using the above-mentioned integrated gate driver circuit also is provided.
摘要:
A control signal generation method of integrated gate driver circuit includes the steps of: providing one gate control signal to an integrated gate driver circuit; and generating a plurality of internal control signals by the integrated gate driver circuit according to on the gate control signal to control internal operations of the integrated gate driver circuit. Furthermore, an integrated gate driver circuit is adapted to receive one external gate control signal. The integrated gate driver circuit includes an internal control signal generation circuit for generating a plurality of internal control signals according to the external gate control signal to control internal operations of the integrated gate driver circuit. In addition, a liquid crystal display device using the above-mentioned integrated gate driver circuit also is provided.
摘要:
A display is provided. The display includes a first timing controller, a second timing controller and drivers. The first timing controller receives and transmits a first portion of pixel values, in which the first portion of the pixel values includes the pixel values of at least two non-adjacent pixels. The second timing controller receives and transmits a second portion of the pixel values, in which the second portion of the pixel values includes the pixel values of at least two non-adjacent pixels. Each of the drivers receives respectively a part of the first portion of the pixel values transmitted by the first timing controller and a part of the second portion of the pixel values transmitted by the second timing controller. A method of transmitting image data in the display is also disclosed.
摘要:
A display is provided. The display includes a first timing controller, a second timing controller and drivers. The first timing controller receives and transmits a first portion of pixel values, in which the first portion of the pixel values includes the pixel values of at least two non-adjacent pixels. The second timing controller receives and transmits a second portion of the pixel values, in which the second portion of the pixel values includes the pixel values of at least two non-adjacent pixels. Each of the drivers receives respectively a part of the first portion of the pixel values transmitted by the first timing controller and a part of the second portion of the pixel values transmitted by the second timing controller. A method of transmitting image data in the display is also disclosed.
摘要:
A driving circuit includes a power supply, a plurality of conductive paths and a plurality of driving controller. The power supply is configured for providing a predetermined voltage. The conductive paths are connected to the power supply to receive the predetermined voltage. The driving controllers are connected to the conductive paths correspondingly. A first driving controller of the driving controllers has a first internal circuit configured for employing an internal voltage to perform functions provided by the first driving controller, and a resistance adjustment unit. The resistance adjustment unit is connected between a special conductive path and the first internal circuit. The second driving controller has a second internal circuit configured for employing a second internal voltage to perform functions provided by the second driving controller. A resistance value of the resistance adjustment unit is adjustable to make the first internal voltage same to the second internal voltage.
摘要:
A driving circuit includes a power supply, a plurality of conductive paths and a plurality of driving controller. The power supply is configured for providing a predetermined voltage. The conductive paths are connected to the power supply to receive the predetermined voltage. The driving controllers are connected to the conductive paths correspondingly. A first driving controller of the driving controllers has a first internal circuit configured for employing an internal voltage to perform functions provided by the first driving controller, and a resistance adjustment unit. The resistance adjustment unit is connected between a special conductive path and the first internal circuit. The second driving controller has a second internal circuit configured for employing a second internal voltage to perform functions provided by the second driving controller. A resistance value of the resistance adjustment unit is adjustable to make the first internal voltage same to the second internal voltage.
摘要:
An LCD gate driver circuitry having a control circuit to adjust the driving current according to a bias control signal, wherein the control circuit comprises a plurality of PMOS switching elements connected in parallel and a plurality of NMOS switching elements connected in parallel. These switching elements form a plurality of PMOS/NMOS switching element pairs. Each of the pairs serves as a current booster stage in the gate driver circuitry. The “ON”/“OFF” state of each switching element pair is controlled by a separate bias signal so that the switching element pairs can be selectively turned on in order to adjust the driver current as needed. As such, the same gate driver circuitry can be used with different LCD panels.
摘要:
A display device capable of adjusting slew rate includes a display panel, a driving circuit, a storage unit, and a compensating circuit. The display panel includes a plurality of signal lines for signal transmission. The driving circuit is coupled to the display panel for generating driving signals to a signal line of the display panel based on a control signal and a corresponding compensating signal. Data related to each signal line and its corresponding compensating signal is stored in the storage unit. The compensating circuit, coupled to the storage unit and the driving circuit, receives the compensating signal from the storage unit and sends the compensating signal to the driving circuit.