Abstract:
A control circuit for adjusting leading edge blanking time is disclosed. The control circuit is applied to a power converting system. The control circuit adjusts a leading edge blanking time according to a feedback signal relative to a load connected to the output terminal of the power converting system. An over-current protection mechanism of the power converting system is disabled within the leading edge blanking time.
Abstract:
A control circuit for adjusting leading edge blanking time is disclosed. The control circuit is applied to a power converting system. The control circuit adjusts a leading edge blanking time according to a feedback signal relative to a load connected to the output terminal of the power converting system. An over-current protection mechanism of the power converting system is disabled within the leading edge blanking time.
Abstract:
A control method for adjusting leading edge blanking time in a power converting system is disclosed. The control method includes: receiving a feedback signal relative to a load connected to an output terminal of the power converting system; determining the leading edge blanking time to be a first value if the feedback signal has a magnitude about a first voltage; and determining the leading edge blanking time to be a second value if the feedback signal has a magnitude about a second voltage, wherein the first value is smaller than the second value, and the first voltage is greater than the second voltage.
Abstract:
A control method for adjusting leading edge blanking time in a power converting system is disclosed. The control method includes: receiving a feedback signal relative to a load connected to an output terminal of the power converting system; determining the leading edge blanking time to be a first value if the feedback signal has a magnitude about a first voltage; and determining the leading edge blanking time to be a second value if the feedback signal has a magnitude about a second voltage, wherein the first value is smaller than the second value, and the first voltage is greater than the second voltage.
Abstract:
A charging device with boundary mode control is disclosed. The charging device includes a transformer, a power switch, a detection circuit and a pulse-width modulation (PWM) controller. The power switch is electrically connected to one end of a primary-side winding of the transformer. The detection circuit is electrically connected to the primary-side winding and the power switch. The detection circuit detects the resonance of the parasitic capacitance of the power switch, thereby generating a detection signal for boundary mode control. The PWM controller generates a pulse-width modulation signal for driving the power switch, and turns on the power switch according to the detection signal.
Abstract:
Integrated circuits for controlling power supplies and relevant control methods are disclosed. A controller generates a control signal to control a power switch. A feedback pin of an integrated circuit receives an external feedback signal representing an output voltage signal of a power supply. Controlled by the control signal, a transferring circuit transfers the feedback signal to the controller when the power switch is off. When the power switch is on, a clamping circuit clamps the voltage of the feedback signal at a predetermined value to avoid the controller from being influenced by the feedback signal.
Abstract:
A charging device with boundary mode control is disclosed. The charging device includes a transformer, a power switch, a detection circuit and a pulse-width modulation (PWM) controller. The power switch is electrically connected to one end of a primary-side winding of the transformer. The detection circuit is electrically connected to the primary-side winding and the power switch. The detection circuit detects the resonance of the parasitic capacitance of the power switch, thereby generating a detection signal for boundary mode control. The PWM controller generates a pulse-width modulation signal for driving the power switch, and turns on the power switch according to the detection signal.
Abstract:
A switch controller for switching power supply is coupled to an auxiliary winding of the switching power supply through a detecting resistor. The switch controller provides a detecting current passing through the detecting resistor for keeping the voltage level of a detecting signal transmitted by the detecting resistor higher than a predetermined voltage. In this way, the switch controller can avoid the latch-up phenomenon caused by receiving the detecting signal of the negative voltage level. In addition, the switch controller can detect the magnitude of an input voltage of the switching power supply by means of the detecting current, and accordingly control the operation of the switching power supply.
Abstract:
A voltage converter includes an electronic induction device, a switch device, a protection circuit, and a control circuit. The switch device, electrically connected to the electronic induction device, is utilized for selectively establishing an electrical connection between the electronic induction device and a predetermined voltage level according to a control signal. The protection circuit, coupled to the electronic induction device, is utilized for selectively establishing an electrical connection between the electronic induction device and the predetermined voltage level, wherein the protection circuit is enabled to establish the electrical connection when a current passing through the switch device exceeds a predetermined current limit. The control circuit, coupled to the switch device, is utilized for generating the control signal.
Abstract:
A high voltage charging circuit is provided with the ability of rapid charging. The circuit is composed of a turn-on control circuit, a turn-off control circuit and a transistor. The turn-on control circuit is adopted to set a turn-on time of a transistor such that the transformer may store magnetic energy, while the turn-off control circuit is used to set a turn-off time of the transistor such that the transformer may release the magnetic energy to charge a high voltage capacitor. Smaller inductance reduces the turn-on time of the power transistor owing to the maximum current of the primary side of the transformer. Therefore, a small-sized transformer may be employed to reduce the volume of the charging circuit with nonoccurrence of saturation.