Abstract:
A process of fabricating a read only memory device (ROM) wherein the buried N+lines have desirable well defined very narrow widths and are closely spaced. In the process, an insulating layer is deposited on the substrate. Openings for the buried N+lines having vertical sidewalls are formed through the insulating layer. Spacer layers are formed on the vertical sidewalls of the openings. Impurities are implanted through the openings. The insulating layers is removed and the substrate is oxidized to form silicon oxide insulation strips over the buried N+implanted regions. Next, the read only memory (ROM) device is completed by fabricating floating gates and overlying control gates between the buried N+lines interconnected by a conductive lines that are orthogonal to the buried N+buried lines.
Abstract:
A method of manufacture of a semiconductor device comprises forming a silicon dioxide film upon the surface of said device, forming patterns of silicon nitride upon the surface of said silicon dioxide film, ion implanting ions into said substrate adjacent to at least some of said silicon nitride patterns for well regions of a first polarity, forming a mask over said device, and deeply ion implanting with ions of opposite polarity into well regions of opposite polarity.
Abstract:
In accordance with the invention, a double poly process is used to double the memory density of a buried bit line ROM on the same silicon area. In particular the word-line pitch is decreased to increase the cell density in a direction perpendicular to the word lines. The invention uses a self-aligned method for ROM code implantation and a polyplanarization by chemical-mechanical polishing (CMP) to achieve a self aligned double poly word line structure.
Abstract:
A ROM is formed by depositing a first layer composed of a material selected from polysilicon and polycide on the substrate, patterning the first layer by masking and etching, depositing a dielectric layer over the first layer and patterning the dielectric layer and the first layer into the pattern of first conductor lines, forming a contact window through the dielectric layer down to the substrate, depositing a second layer composed of a material selected from polysilicon and polycide on the device and forming second conductor lines directed orthogonally to the first conductor lines formed from the first layer, and ion implanting into the substrate through the second layer to form a contact region electrically connected to the second conductor lines of the second layer.
Abstract:
A method for fabricating a capacitors having a fin-shaped electrode on a dynamic random access memory (DRAM) cell having increased capacitance was achieved. The capacitor is fabricated on a silicon substrate having an active device region. The device region contains a metal-oxide-semiconductor field effect transistor (MOSFET), having one capacitor aligned over and contacting the source/drain of the MOSFET in the device region. The capacitor is increased in capacitance by forming a multilayer insulator structure over the storage capacitor area and recessing alternate layers, then using the form as a mold for forming a polysilicon fin-like bottom capacitor electrode. The remaining multilayer mold is removed and a high dielectric constant insulator is deposited on the bottom electrode as the inter-electrode dielectric. The top capacitor electrode is formed by depositing a doped polysilicon layer which also fills the recesses in the bottom electrode forming an interdigitized fin-shaped top and bottom capacitor electrodes and completing a dynamic random access memory (DRAM) cell.
Abstract:
In accordance with the invention, a double poly process is used to double the memory density of a buried bit line ROM on the same silicon area. In particular the word-line pitch is decreased to increase the cell density in a direction perpendicular to the word lines. The invention uses a self-aligned method for ROM code implantation and a polyplanarization by chemical-mechanical polishing (CMP) to achieve a self aligned double poly word line structure.
Abstract:
An insulating layer structure is formed over semiconductor device structures in and on a semiconductor substrate. A conductive polysilicon layer covers the insulating layer which is covered by a silicon oxide layer. The oxide layer is now patterned by lithography and etching. This patterning leaves a first pattern of the oxide over a first designated plurality of polysilicon conductor lines and a second pattern between the oxide which exposes the polysilicon layer over a second designated plurality of polysilicon conductor lines plus the planned spacing between the first and second plurality of polysilicon conductor lines. A uniform thickness silicon nitride layer is deposited over the oxide layer and the exposed polysilicon layer wherein the thickness is the width of the planned spacing. The nitride layer is anisotropically etched to produce sidewall structures having the width of the planned spacing. The exposed polysilicon layer is oxidized. The sidewall structures are removed by etching. The exposed polysilicon layer is anisotropically etched to form closely spaced polysilicon conductor lines. The silicon oxide layers over the polysilicon conductor lines are removed as by etching. N+ ions are implanted into the silicon substrate under the spacing between the polysilicon conductor lines to form bit lines. An insulating layer structure is formed over the bit lines. Processing continues as before to form a second set of polysilicon lines which form the word lines.
Abstract:
A method for fabricating a capacitor having a fin-shaped electrode on a dynamic random access memory (DRAM) cell having increased capacitance was achieved. The capacitor is fabricated on a silicon substrate having an active device region. The device region contains a metal-oxide-semiconductor field effect transistor (MOSFET), having one capacitor aligned over and contacting the source/drain of the MOSFET in the device region. The capacitor is increased in capacitance by forming a multilayer insulator structure over the storage capacitor area and recessing alternate layers, then using the form as a mold for forming a polysilicon fin-like bottom capacitor electrode. The remaining multilayer mold is removed and a high dielectric constant insulator is deposited on the bottom electrode as the inter-electrode dielectric. The top capacitor electrode is formed by depositing a doped polysilicon layer which also fills the recesses in the bottom electrode forming inter-digitized fin-shaped top and bottom capacitor electrodes and completing a dynamic random access memory (DRAM) cell.
Abstract:
A new structure and method for fabricating a stacked capacitor with increased capacitance and which is more manufacturable was accomplished. The stacked capacitor is part of a dynamic random access memory (DRAM) cell for storing charge on the capacitor and together with a field effect transistor (MOSFET) make up the individual DRAM storage cells on a DRAM chip. Fabricating this improved stacked capacitor involves using an additional electrically conducting layer in the polysilicon layer of the bottom electrode. For example, this layer can be composed from materials in the metal nitride group having high conductivity. One preferred choice being titanium nitride (TiN). The bottom electrode is formed by depositing and patterning a thin layer of polysilicon and a thin layer of the electrically conducting layer and then depositing an upper layer of polysilicon from which vertical sidewalls are formed. The conducting layer provides an etch end point for accurately etching to the correct depth. This provided for a repeatable and more manufacturable process. The stacked capacitor is then completed by depositing a high dielectric constant insulator layer over the bottom electrode and forming a top capacitor electrode to complete the stacked capacitor. The bottom electrode contacts one source/drain contacts of the MOSFET and the bit line contacts the other source/drain contact completing the improved DRAM cell.
Abstract:
A method of forming bipolar ROM device on a semiconductor substrate comprises forming a collector region by doping with a dopant of a first polarity, forming an array of common base regions by doping with a dopant of an opposite polarity, forming a plurality of emitter regions selectively in the base regions by doping with a dopant of first polarity and diffusing the dopant into the emitter regions from doped conductors, which conductors are formed as an array of conductors disposed orthogonally relative to the array of common base elements. The conductors are connected to emitter regions traversed thereby and are isolated from other regions by dielectric layers selectively formed over the other regions to prevent diffusion of dopant therethrough to prevent formation of such emitter regions.