摘要:
A malicious object detection system for use in managed runtime environments includes a check circuit to receive call information generated by an application, such as an Android application. A machine learning circuit coupled to the check circuit applies a machine learning model to assess the information and/or data included in the call and detect the presence of a malicious object, such as malware or a virus, in the application generating the call. The machine learning model may include a global machine learning model distributed across a number of devices, a local machine learning model based on use patterns of a particular device, or combinations thereof. A graphical user interface management circuit halts execution of applications containing malicious objects and generates a user perceptible output.
摘要:
Technologies for defeating secure enclave side-channel attacks include a computing device having a processor with secure enclave support. The computing device instruments an executable binary with multiple gadgets, a fault-generating function, and at least one invocation of the fault-generating function. The computing device executes the instrumented executable binary within a secure enclave. During execution of the instrumented binary, each gadget may be located at a different memory page of the secure enclave. The computing device invokes the fault-generating function, which selects a random sequence of the gadgets and executes the random sequence of gadgets. The processor may generate a page fault in response to executing each of the gadgets. Each gadget may generate one or more data accesses to memory pages within the secure enclave. The processor may generate a page fault in response to each of the data accesses. Other embodiments are described and claimed.
摘要:
Various embodiments of this disclosure may describe method, apparatus and system for reducing system latency caused by switching memory page permission views between programs while still protecting critical regions of the memory from attacks of malwares. Other embodiments may be disclosed and claimed.
摘要:
Technologies for hardware assisted native malware detection include a computing device. The computing device includes one or more processors with hook logic to monitor for execution of branch instructions of an application, compare the monitored branch instructions to filter criteria, and determine whether a monitored branch instruction satisfies the filter criteria. Additionally, the computing device includes a malware detector to provide the filter criteria to the hook logic, provide an address of a callback function to the hook logic to be executed in response to a determination that a monitored branch instruction satisfies the filter criteria, and analyze, in response to execution of the callback function, the monitored branch instruction to determine whether the monitored branch instruction is indicative of malware. Other embodiments are also described and claimed.
摘要:
Various embodiments of this disclosure may describe method, apparatus and system for reducing system latency caused by switching memory page permission views between programs while still protecting critical regions of the memory from attacks of malwares. Other embodiments may be disclosed and claimed.
摘要:
A method comprises filtering branch trap events at a branch event filter, monitoring a branch event filter to capture indirect branch trap events that cause a control flow trap exception, receiving the indirect branch trap events at a handler and the handler processing the indirect branch trap events
摘要:
Technologies for control flow exploit mitigation include a computing device having a processor with real-time instruction tracing support. During execution of a process, the processor generates trace data indicative of control flow of the process. The computing device analyzes the trace data to identify suspected control flow exploits. The computing device may use heuristic algorithms to identify return-oriented programming exploits. The computing device may maintain a shadow stack based on the trace data. The computing device may identify indirect branches to unauthorized addresses based on the trace data to identify jump-oriented programming exploits. The computing device may check the trace data whenever the process is preempted. The processor may detect mispredicted return instructions in real time and invoke a software handler in the process space of the process to verify and maintain the shadow stack. Other embodiments are described and claimed.
摘要:
Embodiments of apparatuses and methods for hardware enforced memory access permissions are disclosed. In one embodiment, a processor includes address translation hardware and memory access hardware. The address translation hardware is to support translation of a first address, used by software to access a memory, to a second address, used by the processor to access the memory. The memory access hardware is to detect an access permission violation.
摘要:
Generally, this disclosure provides systems, methods and computer readable media for a protected memory view in a virtual machine (VM) environment enabling nested page table access by trusted guest software outside of VMX root mode. The system may include an editor module configured to provide access to a nested page table structure, by operating system (OS) kernel components and by user space applications within a guest of the VM, wherein the nested page table structure is associated with one of the protected memory views. The system may also include a page handling processor configured to secure that access by maintaining security information in the nested page table structure.
摘要:
In accordance with some embodiments, a protected execution environment may be defined for a graphics processing unit. This framework not only protects the workloads from malware running on the graphics processing unit but also protects those workloads from malware running on the central processing unit. In addition, the trust framework may facilitate proof of secure execution by measuring the code and data structures used to execute the workload. If a part of the trusted computing base of this framework or protected execution environment is compromised, that part can be patched remotely and the patching can be proven remotely throughout attestation in some embodiments.