摘要:
An active-energy-ray-curable composition, cured material of which satisfies W1≧75.0 g and 165.0 g≦W2≦300.0 g when the material is analyzed by variable-normal-load-friction-and-wear-measurement system, W1 being expressed by W1=4*TW1 and W2 being expressed by W2=4*TW2, TW1 and TW2 being obtained by method in which: the material is formed by coating the composition on substrate to have thickness of 10 μm, and curing the composition, and in the system, load is applied to the material with indenter while the load is changed from 0 g through 200 g for 50 seconds to obtain graph having time in horizontal axis and friction resistance force in vertical axis, and in the graph, a time at which scratch first occurs in the material is defined as T1 and time closest to T1 among times at which change in the friction resistance force is discontinuous is defined as TW1; and TW2 is defined as time at which the substrate is exposed.
摘要:
An active-energy-ray-curable composition, a cured material of the active-energy-ray-curable composition satisfying a critical load of 5.0 g or more but 25.0 g or less, the critical load being obtained by a continuous loading test method using a variable normal load friction and wear measurement device, the cured material having an average thickness of 10 μm and being formed by coating the active-energy-ray-curable composition on a substrate and by irradiating and curing the active-energy-ray-curable composition with active energy rays having illuminance of 1.5 W/cm2 and an amount of irradiation of 200 mJ/cm2.
摘要:
An active-energy-ray-curable composition, a cured material of the active-energy-ray-curable composition satisfying a critical load of 5.0 g or more but 25.0 g or less, the critical load being obtained by a continuous loading test method using a variable normal load friction and wear measurement device, the cured material having an average thickness of 10 μm and being formed by coating the active-energy-ray-curable composition on a substrate and by irradiating and curing the active-energy-ray-curable composition with active energy rays having illuminance of 1.5 W/cm2 and an amount of irradiation of 200 mJ/cm2.
摘要:
Active-energy-ray-curable composition including: monofunctional monomers; and polymerization initiator, cured material of the composition satisfying 0.30≦D≦0.85, where D is difference between peak-area-ratios A and B in infrared-ATR and obtained by: the composition is coated on polycarbonate substrate to form coated film having average thickness of 10 μm; the film is irradiated with active energy rays having light quantity of 500 mJ/cm2 at UV intensity of 1.0 W/cm2 for curing; the A is obtained from Formula (1) by infrared-ATR at one portion present from the cured material surface through 1 μm away therefrom toward the substrate, the B is obtained from Formula (1) by infrared-ATR at one portion present from the substrate-cured material interface through 1 μm away therefrom toward the cured material surface, Peak-area (from 1,679 m−1 through 1,751 m−1/peak-area (from 1,096 m−1 through 1,130 m−1) Formula (1), and the A and B obtained are used to obtain D from Formula (2): D=peak-area-ratio A−peak-area-ratio B Formula (2).
摘要:
An active-energy-ray-curable composition including active-energy-ray-polymerizable compounds, wherein the active-energy-ray-polymerizable compounds include a monofunctional monomer, a bifunctional monomer, and a trifunctional monomer, and wherein the monofunctional monomer, the bifunctional monomer, and the trifunctional monomer satisfy conditions (1) and (2) below: (1) [number of functional groups derived from the monofunctional monomer]>[number of functional groups derived from the bifunctional monomer]>[number of functional groups derived from the trifunctional monomer]; and (2) a standard deviation of functional group ratios is from 0.003 through 0.030, the functional group ratios being expressed by [number of functional groups derived from N-functional monomer]/([number of functional groups derived from the monofunctional monomer]+[number of functional groups derived from the bifunctional monomer]+[number of functional groups derived from the trifunctional monomer]), the N being mono, bi, or tri.
摘要:
A contacting member contacts a region of a contacted member to which a liquid composition has been applied. The contacting member contains a substrate, a fluororesin fiber layer, an adhesive layer, and a mixed layer. The fluororesin fiber layer contains a fluororesin fiber and is configured to contact the contacted member. The adhesive layer contains an adhesive member directly or indirectly fixing the fluororesin fiber layer to the substrate. In the mixed layer, the fluororesin fiber in the fluororesin layer and the adhesive member in the adhesive layer are mixed. A thickness of the mixed layer is from 5% or more and 60% or less with respect to a thickness of the fluororesin fiber layer.
摘要:
A cleaning blade including an elastic member configured to be in contact with a surface of a cleaning-target member to remove deposited matter deposited on the surface of the cleaning-target in member, wherein the elastic member includes a base and a surface layer formed of a cured product of a curable composition, the surface layer is formed on at least part of a bottom surface of the base including a contact part to be in contact with the cleaning-target member, where the bottom surface of the base is a surface of the base facing a downstream side along a traveling direction of the cleaning-target member relative to the contact part, and an average film thickness of the surface layer at the contact part is 10 μm or greater but 100 μm or less.
摘要:
A method of preparing a carrier for electrophotography, including a core material and a coating material layer formed on the surface of the core material, including: coating the core material with the coating material; and burning the coating material with a high-frequency induction heater, wherein the core material has a saturated magnetization of from 40 to 95 Am2/kg.
摘要:
A method of manufacturing toner carrier formed of a core and a cover thereon, including the steps of: coating the core with a liquid cover containing a solvent and a material for forming the cover on the core in a processing tank; heating the core and the cover by first microwave radiation to volatilize the solvent from the cover; and removing the solvent volatilized in the step of heating from the processing tank.