摘要:
Apparatus is described for rapidly coating a large area, or for rapidly producing a powder. In one embodiment, a liquid having a coating chemical is pumped from a liquid reservoir to a distribution manifold. From the distribution manifold, the liquid is carried under pressure to a geometric array, e.g., linear, of atomization nozzles. Flow equalization means are provided for equalizing the flow of the liquid delivered to each nozzle, and, preferably, means are provided for equalizing the temperature of the liquid delivered to each nozzle. The liquid, upon exiting the nozzles with the attendant pressure drop atomizes. The atomized liquid coats a substrate either in non-reacted or reacted form, or forms a powder. In a preferred embodiment, a solution of precursor chemical is reacted in a geometric array of flames produced at the nozzles, and a coating material produced in the flame coats the substrate, or a powder is formed. In another embodiment, vaporized precursor and vaporized are fed to a burner chamber having a linear exit slit. The vapor exiting the slit is burned, and material produced in a flame reaction are deposited on a substrate, or the powder formed is collected.
摘要:
The present invention involves controlled atomization of liquids for various applications such as part/droplet seeding for laser-based measurements of flow velocity, temperature, and concentration; flame and a plasma based elemental analysis; nano-powder production; spray drying for generation of small-sized particles; nebulizers in the production of sub-micron size droplets and for atomizing fuel for use in combustion chambers. In these and other atomizer applications the control of droplet and/or particle size is very critical In some applications extremely small droplets are preferred (less than a micron), while in others, droplet diameters on the scale of several microns are required. The present invention has the flexibility of forming droplets within a particular range of diameters, wherein not only the size of the average droplet can be adjusted, but the range of sizes may be adjusted as well. The atomizer (4) itself is in the form of a heated tube (44) having an inlet end (48) and an outlet end (50). As liquid travels through the tube it is heated and upon exiting the tube and entering a reduced pressure area the liquid atomizes to form very fine droplets. By electrically heating the tube by passing a current therethrough, the heating adjustment can be performed on-the-fly allowing size adjustment during operation of the atomizer. Several different embodiments of the atomization device are disclosed.
摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
A coated article is provided so as to have a fairly high visible transmission (TY or Tvis) to sheet resistance (Rs) ratio (i.e., a ratio Tvis/Rs). The higher this ratio, the better the coated article's combined functionality of providing for both good solar performance (e.g., ability to reflect and/or absorb IR radiation) and high visible transmission. In certain example embodiments, coated articles herein may be heat treatable. Coated articles herein may be used in the context of insulating glass (IG) window units, architectural or residential monolithic window units, vehicle window units, and/or the like.
摘要:
A sputter coated article is provided with improved mechanical durability (e.g., pre-HT scratch resistance) and/or thermal stability by sputtering at least one Ag inclusive layer in an atmosphere including at least O2 gas. For instance, in certain example embodiments an Ag inclusive target may be sputtered in an atmosphere including a combination of Ar and O2 gas. In certain embodiments, this enables the resulting AgOx infrared (IR) reflecting layer to better adhere to adjacent contact layer(s).
摘要:
A coated article is provided so as to have a fairly high visible transmission (TY or Tvis) to sheet resistance (Rs) ratio (i.e., a ratio Tvis/Rs). The higher this ratio, the better the coated article's combined functionality of providing for both good solar performance (e.g., ability to reflect and/or absorb IR radiation) and high visible transmission. In certain example embodiments, coated articles herein may be heat treatable. Coated articles herein may be used in the context of insulating glass (IG) window units, architectural or residential monolithic window units, vehicle window units, and/or the like.
摘要:
A coated article is provided so as to have a fairly high visible transmission (TY or Tvis) to sheet resistance (Rs) ratio (i.e., a ratio Tvis/Rs). The higher this ratio, the better the coated article's combined functionality of providing for both. good solar performance (e.g., ability to reflect and/or absorb IR radiation) and high visible transmission. In certain example embodiments, coated articles herein may be heat treatable. Coated articles herein may be used in the context of insulating glass (IG) window units, architectural or residential monolithic window units, vehicle window units, and/or the like.
摘要:
A variable reflectance rearview mirror for a vehicle, comprising: (a) a variable reflectance mirror element having a reflectivity that varies in response to an applied potential so as to exhibit at least a high reflectance state and a low reflectance state; (b) a self-cleaning, hydrophilic coating applied to a front surface of said mirror element having a controlled surface morphology.