摘要:
Dual seed semiconductor photodetectors and methods to fabricate thereof are described. A dual seed semiconductor photodetector is formed directly on an insulating layer on a substrate. The dual seed semiconductor photodetector includes an optical layer formed on a dual seed semiconductor layer. The dual seed semiconductor layer includes a seed layer and a buffer layer. The seed layer of a first material is formed on an insulating layer over a substrate. The buffer layer is formed on the seed layer. Next, an optical layer of a second material is formed on the buffer layer. The buffer layer includes the first material and the second material. In one embodiment, the first material is silicon. In one embodiment, the second material is germanium.
摘要:
Dual seed semiconductor photodetectors and methods to fabricate thereof are described. A dual seed semiconductor photodetector is formed directly on an insulating layer on a substrate. The dual seed semiconductor photodetector includes an optical layer formed on a dual seed semiconductor layer. The dual seed semiconductor layer includes a seed layer and a buffer layer. The seed layer of a first material is formed on an insulating layer over a substrate. The buffer layer is formed on the seed layer. Next, an optical layer of a second material is formed on the buffer layer. The buffer layer includes the first material and the second material. In one embodiment, the first material is silicon. In one embodiment, the second material is germanium.
摘要:
Dual seed semiconductor photodetectors and methods to fabricate thereof are described. A dual seed semiconductor photodetector is formed directly on an insulating layer on a substrate. The dual seed semiconductor photodetector includes an optical layer formed on a dual seed semiconductor layer. The dual seed semiconductor layer includes a seed layer and a buffer layer. The seed layer of a first material is formed on an insulating layer over a substrate. The buffer layer is formed on the seed layer. Next, an optical layer of a second material is formed on the buffer layer. The buffer layer includes the first material and the second material. In one embodiment, the first material is silicon. In one embodiment, the second material is germanium.
摘要:
Dual seed semiconductor photodetectors and methods to fabricate thereof are described. A dual seed semiconductor photodetector is formed directly on an insulating layer on a substrate. The dual seed semiconductor photodetector includes an optical layer formed on a dual seed semiconductor layer. The dual seed semiconductor layer includes a seed layer and a buffer layer. The seed layer of a first material is formed on an insulating layer over a substrate. The buffer layer is formed on the seed layer. Next, an optical layer of a second material is formed on the buffer layer. The buffer layer includes the first material and the second material. In one embodiment, the first material is silicon. In one embodiment, the second material is germanium.
摘要:
A photosensitive device for enabling high speed detection of electromagnetic radiation. The device includes recessed electrodes for providing a generally homogeneous electric field in an active region. Carriers generated in the active region are detected using the recessed electrodes.
摘要:
A semiconductor device is described with a photodetector embedded within and a method of manufacturing the same. The photodetector may be formed above the conductive layers within the device and may detect transmitted light from the top side of the device. The process of manufacturing the device may include a damascene or a subtractive etch process.
摘要:
Metal-Semiconductor-Metal (“MSM”) photodetectors and methods to fabricate thereof are described. The MSM photodetector includes a thin heavily doped (“delta doped”) layer deposited at an interface between metal contacts and a semiconductor layer to reduce a dark current of the MSM photodetector. In one embodiment, the semiconductor layer is an intrinsic semiconductor layer. In one embodiment, the thickness of the delta doped layer is less than 100 nanometers. In one embodiment, the delta doped layer has a dopant concentration of at least 1×1018 cm−3. A delta doped layer is formed on portions of a semiconductor layer over a substrate. Metal contacts are formed on the delta doped layer. A buffer layer may be formed between the substrate and the semiconductor layer. In one embodiment, the substrate includes silicon, and the semiconductor layer includes germanium.
摘要:
A photosensitive device for enabling high speed detection of electromagnetic radiation. The device includes recessed electrodes for providing a generally homogeneous electric field in an active region. Carriers generated in the active region are detected using the recessed electrodes.
摘要:
Metal-Semiconductor-Metal (“MSM”) photodetectors and methods to fabricate thereof are described. The MSM photodetector includes a thin heavily doped (“delta doped”) layer deposited at an interface between metal contacts and a semiconductor layer to reduce a dark current of the MSM photodetector. In one embodiment, the semiconductor layer is an intrinsic semiconductor layer. In one embodiment, the thickness of the delta doped layer is less than 100 nanometers. In one embodiment, the delta doped layer has a dopant concentration of at least 1×1018 cm−3. A delta doped layer is formed on portions of a semiconductor layer over a substrate. Metal contacts are formed on the delta doped layer. A buffer layer may be formed between the substrate and the semiconductor layer. In one embodiment, the substrate includes silicon, and the semiconductor layer includes germanium.
摘要:
Metal-Semiconductor-Metal (“MSM”) photodetectors and methods to fabricate thereof are described. The MSM photodetector includes a thin heavily doped (“delta doped”) regions deposited at an interface between metal contacts and a semiconductor layer to reduce a dark current of the MSM photodetector. Band engineering at the metal-semiconductor interfaces using complementarily delta doped semiconductor regions to fix two different interface workfunctions. Delta doping the grounded contact interface with p+ and the reverse biased interface with n+ enhances the Schottky barrier faced by both electrons and holes at the point of injection from source contact into the channel and at the point of collection from the channel into the drain contact.