摘要:
A barrier layer that meets three requirements, “withstand well against etching and protect a semiconductor film from an etchant as an etching stopper”, “allow impurities to move in itself during heat treatment for gettering”, and “have excellent reproducibility”, is formed and used to getter impurities contained in a semiconductor film. The barrier layer is a silicon oxide film and the ratio of a sub-oxide contained in the barrier layer is 18% or higher.
摘要:
A spin addition method for catalyst elements is simple and very important technique, because the minimum amount of a catalyst element necessary for crystallization can be easily added by controlling the catalyst element concentration within a catalyst element solution, but there is a problem in that uniformity in the amount of added catalyst element within a substrate is poor. The non-uniformity in the amount of added catalyst element within the substrate is thought to influence fluctuation in crystallinity of a crystalline semiconductor film that has undergone thermal crystallization, and exert a bad influence on the electrical characteristics of TFTs finally structured by the crystalline semiconductor film. The present invention solves this problem with the aforementioned conventional technique. If the spin rotational acceleration speed is set low during a period moving from a dripping of the catalyst element solution process to a high velocity spin drying process in a catalyst element spin addition step, then it becomes clear that the non-uniformity of the amount of added catalyst element within the substrate is improved. The above stated problems are therefore solved by applying a spin addition process with a low spin rotational acceleration to a method of manufacturing a crystalline semiconductor film.
摘要:
In order to solve the problem of inferior gettering efficiency in the n-channel TFT, the present invention provides at an end of the source/drain regions of the n-channel TFT a highly efficient gettering region that contains both of an n-type impurity and a p-type impurity with the concentration of the p-type impurity set higher than the concentration of the n-type impurity.
摘要:
Problems in prior art regarding an n-channel TFT in the source/drain gettering method are solved. In the n-channel TFT, its source/drain regions contain only an n-type impurity. Therefore, compared to a p-channel TFT whose source/drain regions contain an n-type impurity and a higher concentration of p-type impurity, the gettering efficiency is inferior in a channel region of the n-channel transistor. Accordingly, the problem of inferior gettering efficiency in the n-channel TFT can be solved by providing at an end of its source/drain regions a highly efficient gettering region that contains an n-type impurity and a p-type impurity both with the concentration of the p-type impurity set higher than the concentration of the n-type impurity.
摘要:
Problems in prior art regarding an n-channel TFT in the source/drain gettering method are solved. In the n-channel TFT, its source/drain regions contain only an n-type impurity. Therefore, compared to a p-channel TFT whose source/drain regions contain an n-type impurity and a higher concentration of p-type impurity, the gettering efficiency is inferior in a channel region of the n-channel transistor. Accordingly, the problem of inferior gettering efficiency in the n-channel TFT can be solved by providing at an end of its source/drain regions a highly efficient gettering region that contains an n-type impurity and a p-type impurity both with the concentration of the p-type impurity set higher than the concentration of the n-type impurity.
摘要:
A catalytic element is added to an amorphous semiconductor film and heat treatment is conducted therefor to produce a crystalline semiconductor film with good quality, a TFT (semiconductor device) with a satisfactory characteristic is realized using the crystalline semiconductor film. A semiconductor layer includes a region containing an impurity element which has a concentration of 1×1019/cm3 to 1×1021/cm3 and belongs to group 15 of the periodic table and an impurity element which has a concentration of 1.5×1019/cm3 to 3×1021/cm3 and belongs to group 13 of the periodic table, and the region is a region to which a catalytic element left in the semiconductor film (particularly, the channel forming region) moves.
摘要翻译:将催化元素添加到非晶半导体膜中,并进行热处理以产生质量好的结晶半导体膜,使用晶体半导体膜实现具有令人满意的特性的TFT(半导体器件)。 半导体层包括含有浓度为1×10 19 / cm 3至1×10 12 / cm 3的杂质元素的区域 属于周期表第15组,杂质元素浓度为1.5×10 9 / cm 3至3×10 21 / SUP> / cm 3,属于周期表第13族,区域是留在半导体膜(特别是沟道形成区)中的催化元素移动的区域。
摘要:
A spin addition method for catalyst elements is simple and very important technique, because the minimum amount of a catalyst element necessary for crystallization can be easily added by controlling the catalyst element concentration within a catalyst element solution, but there is a problem in that uniformity in the amount of added catalyst element within a substrate is poor. The non-uniformity in the amount of added catalyst element within the substrate is thought to influence fluctuation in crystallinity of a crystalline semiconductor film that has undergone thermal crystallization, and exert a bad influence on the electrical characteristics of TFTs finally structured by the crystalline semiconductor film. The present invention solves this problem with the aforementioned conventional technique. If the spin rotational acceleration speed is set low during a period moving from a dripping of the catalyst element solution process to a high velocity spin drying process in a catalyst element spin addition step, then it becomes clear that the non-uniformity of the amount of added catalyst element within the substrate is improved. The above stated problems are therefore solved by applying a spin addition process with a low spin rotational acceleration to a method of manufacturing a crystalline semiconductor film.
摘要:
A spin addition method for catalyst elements is simple and very important technique, because the minimum amount of a catalyst element necessary for crystallization can be easily added by controlling the catalyst element concentration within a catalyst element solution, but there is a problem in that uniformity in the amount of added catalyst element within a substrate is poor. The non-uniformity in the amount of added catalyst element within the substrate is thought to influence fluctuation in crystallinity of a crystalline semiconductor film that has undergone thermal crystallization, and exert a bad influence on the electrical characteristics of TFTs finally structured by the crystalline semiconductor film. The present invention solves this problem with the aforementioned conventional technique. If the spin rotational acceleration speed is set low during a period moving from a dripping of the catalyst element solution process to a high velocity spin drying process in a catalyst element spin addition step, then it becomes clear that the non-uniformity of the amount of added catalyst element within the substrate is improved. The above stated problems are therefore solved by applying a spin addition process with a low spin rotational acceleration to a method of manufacturing a crystalline semiconductor film.
摘要:
A catalytic element is added to an amorphous semiconductor film and heat treatment is conducted therefor to produce a crystalline semiconductor film with good quality, a TFT (semiconductor device) with a satisfactory characteristic is realized using the crystalline semiconductor film. A semiconductor layer includes a region containing an impurity element which has a concentration of 1×1019/cm3 to 1×1021/cm3 and belongs to group 15 of the periodic table and an impurity element which has a concentration of 1.5×1019/cm3 to 3×1021/cm3 and belongs to group 13 of the periodic table, and the region is a region to which a catalytic element left in the semiconductor film (particularly, the channel forming region) moves.
摘要:
A spin addition method for catalyst elements is simple and very important technique, because the minimum amount of a catalyst element necessary for crystallization can be easily added by controlling the catalyst element concentration within a catalyst element solution, but there is a problem in that uniformity in the amount of added catalyst element within a substrate is poor. The non-uniformity in the amount of added catalyst element within the substrate is thought to influence fluctuation in crystallinity of a crystalline semiconductor film that has undergone thermal crystallization, and exert a bad influence on the electrical characteristics of TFTs finally structured by the crystalline semiconductor film. The present invention solves this problem with the aforementioned conventional technique. If the spin rotational acceleration speed is set low during a period moving from a dripping of the catalyst element solution process to a high velocity spin drying process in a catalyst element spin addition step, then it becomes clear that the non-uniformity of the amount of added catalyst element within the substrate is improved. The above stated problems are therefore solved by applying a spin addition process with a low spin rotational acceleration to a method of manufacturing a crystalline semiconductor film.