摘要:
The second harmonic wave of a solid laser light which is emitted from a second harmonic wave light source is divided into a plurality of laser beams by a diffraction grating. The divided laser beams are converged on a record carrier into a plurality of light spots by an optical head. Magnetic field generating coils for applying magnetic fields to the respective light spots in accordance with the recording signals from a signal line are disposed under the record carrier. Part of the solid laser light is reflected and input to a beam splitter. Since part of the light input to the beam splitter is taken out, a stabilizer controls the output of the solid laser light from the second harmonic wave light source, parallel recording/reproduction using the plurality of light spots which are arranged on the record carrier is enabled and the formation of the plurality of light spots is effectively controlled. Thus, a magneto-optical recording and reproducing apparatus which is capable of high-density recording and high-speed data transfer, which supplies a stable and accurate optical output, and which facilitates the control of the optical output is provided.
摘要:
The reference character 5 denotes a supporting shaft holding base, which holds the lower end of a supporting shaft 103 coated with fluororesin with a small frictional coefficient. The reference characters 107a and 107b are tracking magnets bipolar-magnetized in the right and left direction, which are fixed to a fixing base 1 by bonding. The character 108 denotes a mirror for reflecting a light beam 2 incident from the front in the vertical upward direction. The character 6 denotes a lens holder formed of a plastic material, or the like, with light weight and high stiffness, which holds objective lenses 3 and 4 corresponding to a plurality of optical information recording media with different substrate thicknesses and different recording densities at positions eccentrically displaced by almost equal distances from the supporting shaft 103.
摘要:
A lens actuating system for an optical disk drive has an objective lens movably mounted in a movable frame with orthogonal X-, Y-, and Z-axes. A seeking servo moves the frame in the X-direction. A tracking servo moves the objective lens in the X-direction. A focusing servo moves the objective lens in the Z-direction. An optoelectronic sensor detects the relative position of the objective lens and frame in the X-direction, so that the tracking servo can maintain a fixed relative position during track-seeking, or in the Z-direction, to establish a neutral point on the Z-axis for the focusing servo. Force applied by the focusing servo or tracking servo to move the objective lens in one direction can be opposed by an equal and opposite force applied to a driven mass, so that a net zero force is transmitted to the frame.
摘要:
An optical device inclination angle adjuster for adjusting an optical axis of an optical device. The optical device has an optical axis and a peripheral portion, and is held by a holder. The adjuster includes an annular plate inserted between the optical device and the holder. The annular plate is in alignment with the peripheral portion of the optical device, and has an opening with an axis in alignment with the optical axis of the optical device to permit passage of light through the opening of the annular plate and through the optical device. A first pair of projections are formed between the annular plate and the optical device. The first pair of projections are disposed diametrically opposite to each other with respect to the optical axis and project in a direction parallel to the optical axis. A second pair of projections are formed between the annular plate and the holder. The second pair of projections are disposed diametrically opposite to each other with respect to the optical axis and project in a direction parallel to the optical axis. The first pair of projections and the second pair of projections are disposed at different rotary angles about the optical axis; whereby the inclination angle is adjusted by rotating the optical device about the first pair of projections or about the second pair of projections.
摘要:
A lens actuating system for an optical disk drive has an objective lens movably mounted in a movable frame with orthogonal X-, Y-, and Z-axes. A seeking servo moves the frame in the X-direction. A tracking servo moves the objective lens in the X-direction. A focusing servo moves the objective lens in the Z-direction. An optoelectronic sensor detects the relative position of the objective lens and frame in the X-direction, so that the tracking servo can maintain a fixed relative position during track-seeking, or in the Z-direction, to establish a neutral point on the Z-axis for the focusing servo. Force applied by the focusing servo or tracking servo to move the objective lens in one direction can be opposed by an equal and opposite force applied to a driven mass, so that a net zero force is transmitted to the frame.
摘要:
An optical head device mounted in an optical disc device. The optical head device is provided with a diffractive optical element and a photodetector. The diffractive optical element has: a primary diffraction region at a location on which the positive and negative first-order components and some of the zero-order component of a reflectively diffracted light beam are incident; and secondary diffraction regions at locations on which the rest of the zero-order component but none of the positive or negative first-order components of the reflectively diffracted light beam are incident. A main light-receiving section of the photodetector receives the zero-order component of a transmissively diffracted light beam that has passed through the primary diffraction region and the secondary diffraction regions. Secondary light-receiving sections receive the positive first-order component and/or the negative first-order component of the transmissively diffracted light beam that has passed through the secondary diffraction regions.
摘要:
When using an optical disc medium that includes pit trains having their widths narrower than a diffraction limit, it is difficult to detect a tracking error signal and take a tracking-servo control while increasing pit density in a direction orthogonal to a pit-train extension direction.Information pit trains are arranged spirally or concentrically and formed in a structure in which their depths are changed periodically at a pitch radially along the optical disc medium, so that the tracking error signal can be obtained by push-pull detection of diffraction light from the structure.
摘要:
When using an optical disc medium that includes pit trains having their widths narrower than a diffraction limit, it is difficult to detect a tracking error signal and take a tracking-servo control while increasing pit density in a direction orthogonal to a pit-train extension direction. Information pit trains are arranged spirally or concentrically and formed in a structure in which their depths are changed periodically at a pitch radially along the optical disc medium, so that the tracking error signal can be obtained by push-pull detection of diffraction light from the structure.
摘要:
An optical head device mounted in an optical disc device. The optical head device is provided with a diffractive optical element and a photodetector. The diffractive optical element has: a primary diffraction region at a location on which the positive and negative first-order components and some of the zero-order component of a reflectively diffracted light beam are incident; and secondary diffraction regions at locations on which the rest of the zero-order component but none of the positive or negative first-order components of the reflectively diffracted light beam are incident. A main light-receiving section of the photodetector receives the zero-order component of a transmissively diffracted light beam that has passed through the primary diffraction region and the secondary diffraction regions. Secondary light-receiving sections receive the positive first-order component and/or the negative first-order component of the transmissively diffracted light beam that has passed through the secondary diffraction regions.
摘要:
A light source (1) is composed of a single element having a light emitting point (2S) emitting a light (3S) and a light emitting point (2L) emitting a light (3L) at a longer wavelength than the light (3S), the light emitting point (2S) and the light emitting point (2L) being formed monolithically. In the direction parallel to the optical axis of a collimator lens (6), the light emitting point (2S) is placed closer, than the light emitting point (2L), to the collimator lens (6) and is placed on the side of the inclined plane (7a) of the beam shaping prism (7). The incidence angles of the light (3S) and the light (3L) to the inclined plane (7a) are set so that the incidence angle of the light (3S) is larger than that of the light (3L) and so that the lights (3S) and (3L) exit from the inclined plane (7a) at equal exit angles. The collimator lens (6), the beam shaping prism (7), etc. have refractive indexes which become larger as the wavelength of incident light becomes shorter. It is then possible to simplify the structure and reduce the unstableness of operation caused by a difference in light wavelength.