摘要:
Provided is a signal processing device including: an adaptive filter; a PRML circuit for sequentially generating binarized data from a filtered reproduced waveform by sampling at sampling points in a period based on a clock signal and sequentially generating a partial response waveform which is to be the target waveform from the binarized data; a calculating unit for sequentially calculating first phase errors from a difference between the target waveform and the filtered reproduced waveform; a limiting unit for outputting second phase errors by excluding a specific phase error from the first phase errors; and a clock generating unit for generating the clock signal of a frequency corresponding to the second phase errors; wherein the specific phase error includes a phase error at a time when the partial response waveform reaches a specific level which excludes at least a level not less than a predetermined amplitude level.
摘要:
A first signal is detected from the central part of a light beam returning from a super-resolution optical disc; a second signal is detected from a peripheral part in a direction corresponding to a track on the super-resolution optical disc; a gain adjustment unit is provided to adjust the amplitude of the first signal; a subtraction unit is provided to generate a third signal by subtracting, from the second signal, the first signal with the amplitude adjusted by the gain adjustment unit; and an unit is provided to generate a reproduced signal by combining the first signal and a signal obtained by delaying the third signal.
摘要:
[Object] A recoding playback apparatus and an optical disk are provided that allows reduction of a low frequency noise at a time of playback of a super resolution optical disk including small record marks whose size is below the diffractive limitation, to enhance quality of a playback signal.[Means for Solution] The reflective beams from the optical disk are received by dividing into outer portion beams and a center portion beam, and a playback signal is created by combining such beams based on respective different gains. Based on received amounts of light or amounts of low frequency noise in respective light receiving regions, adjustment or determination of gain values is made, or the optical head apparatus is optically adjusted, whereby the low frequency noise is optimally suppressed. Further, a specific region is provided on the optical disk for making the foregoing adjustment.
摘要:
An optical pickup device includes a first optical system and a second optical system. The first optical system and the second optical system each include a mirror member that reflects light from a light source to change a direction of propagation of the light to a direction substantially perpendicular to the information storage surface of an optical disc. The first optical system and the second optical system are arranged such that a direction in which light from a first light source enters a first mirror member is substantially perpendicular to a direction in which light from a second light source enters a second mirror member.
摘要:
An object of the present invention is to provide an extraction optical system capable of separating and extracting a signal light and a stray light with a simple configuration, and an optical head device including the same. A phase plate and a phase plate are +λ/4 phase plates, while a phase plate and a phase plate are −λ/4 phase plates. A focal line, a focal line and a focal line represent a focal line of a stray light, a focal line of a reproduction light and a focal line of a stray light, respectively. All beams of the reproduction light enter the state in which a polarization direction is rotated by 90 degrees after passing through the phase element. In contrast to the all light bundles of the reproduction light, polarization directions of all light bundles of the stray lights and are not rotated even after passing through the phase element.
摘要:
An optical pickup with a simplified structure in which, according to the type of optical disc, diffracted light from three types of laser light can be directed efficiently onto a photodetector and appropriate focus control can be performed based on the signals detected by the photodetector, and a diffractive optical element that can be used in the optical pickup, which has a semiconductor laser 10 that can emit three types of laser light, a diffractive optical element 42 that diffracts the laser light reflected from the optical disc 31, and a single photodetector 43 that detects the diffracted light exiting the diffractive optical element 42. The diffractive optical element 42 is structured so that 0-order light is the maximal component of the diffracted light generated from each of two of three types of laser light, the two having close wavelengths (with a small wavelength difference), and +1-order light or −1-order light is the maximal component of the diffracted light generated from the remaining one type of laser light.
摘要:
A semiconductor laser unit includes a plurality of semiconductor laser elements arranged parallel with one another in a laser beam-emitting direction, and a base for positioning and fixing the plurality of semiconductor laser elements. The plurality of semiconductor laser elements are arranged such that a laser beam emitted from the semiconductor laser element greatest in astigmatism, of the plurality of semiconductor laser elements, is coincident in its axis with a reference axis of the base. In the case that the semiconductor laser unit is arranged on an optical head device, the focusing characteristic on the plurality of laser beams can be improved.
摘要:
An optical disc device uses an optical disc (6) capable of super-resolution reproduction, and includes a semiconductor laser (1), a laser driving circuit (21) that supplies a driving current to the semiconductor laser, a light receiving element (8) that detects return light from the optical disc (6) and obtains reproduction signal of recording data of the optical disc (6), and a light emission amount control means (22) that controls a light emission amount of the semiconductor laser (1) by the laser driving circuit (21) so as to keep a peak intensity of a focused light spot formed on an information recording layer of the optical disc 6 to be greater than or equal to a peak intensity at which a super-resolution effect is obtained. The light emission amount control means (22) controls a light emission amount of the semiconductor laser (1) by the laser driving circuit (21) based on a decrease rate D of a peak intensity of a focused light spot on an information recording layer of the optical disc (1) determined by an assumed disc tilt and a comatic aberration according to a thickness of a light transmitting layer of the optical disc (1), and a lower limit value Pld_L of a light emission amount at which a predetermined reproduction performance is obtained.
摘要:
An optical disc device uses an optical disc (6) capable of super-resolution reproduction, and includes a semiconductor laser (1), a laser driving circuit (21) that supplies a driving current to the semiconductor laser, a light receiving element (8) that detects return light from the optical disc (6) and obtains reproduction signal of recording data of the optical disc (6), and a light emission amount control means (22) that controls a light emission amount of the semiconductor laser (1) by the laser driving circuit (21) so as to keep a peak intensity of a focused light spot formed on an information recording layer of the optical disc 6 to be greater than or equal to a peak intensity at which a super-resolution effect is obtained. The light emission amount control means (22) controls a light emission amount of the semiconductor laser (1) by the laser driving circuit (21) based on a decrease rate D of a peak intensity of a focused light spot on an information recording layer of the optical disc (1) determined by an assumed disc tilt and a comatic aberration according to a thickness of a light transmitting layer of the optical disc (1), and a lower limit value Pld_L of a light emission amount at which a predetermined reproduction performance is obtained.
摘要:
An optical head device mounted in an optical disc device. The optical head device is provided with a diffractive optical element and a photodetector. The diffractive optical element has: a primary diffraction region at a location on which the positive and negative first-order components and some of the zero-order component of a reflectively diffracted light beam are incident; and secondary diffraction regions at locations on which the rest of the zero-order component but none of the positive or negative first-order components of the reflectively diffracted light beam are incident. A main light-receiving section of the photodetector receives the zero-order component of a transmissively diffracted light beam that has passed through the primary diffraction region and the secondary diffraction regions. Secondary light-receiving sections receive the positive first-order component and/or the negative first-order component of the transmissively diffracted light beam that has passed through the secondary diffraction regions.