摘要:
Method and system for transmitting a directionally modulated data stream via an antenna array. A first signal processing circuitry receives a data symbol of a first data stream, maps the first data stream to a specified number of sub-beams based on a stream beam-width assignment, assigns a direction angle for transmission of the data stream, and transmits in parallel, for each of the specified number of sub-beams, an instance of the data symbol to a second signal processing circuitry. The second signal processing circuitry generates antenna array element weights based on the data symbol and a matrix having a DFT structure. The matrix is independent of the assigned direction angle. The data symbol is transmitted via the antenna array utilizing the antenna array element weights. The DFT is implemented as a fast Fourier transform. White noise is transmitted in the sub-beams beams outside the beam-width requirement of the data stream.
摘要:
Method and system for transmitting a directionally modulated data stream via an antenna array. A first signal processing circuitry receives a data symbol of a first data stream, maps the first data stream to a specified number of sub-beams based on a stream beam-width assignment, assigns a direction angle for transmission of the data stream, and transmits in parallel, for each of the specified number of sub-beams, an instance of the data symbol to a second signal processing circuitry. The second signal processing circuitry generates antenna array element weights based on the data symbol and a matrix having a DFT structure. The matrix is independent of the assigned direction angle. The data symbol is transmitted via the antenna array utilizing the antenna array element weights. The DFT is implemented as a fast Fourier transform. White noise is transmitted in the sub-beams beams outside the beam-width requirement of the data stream.
摘要:
A system and method for increasing the capacity of a Multiple-Input Multiple-Output (MIMO) system at desired user's locations and reducing the capacity at locations, other than that of the desired user, while also providing secrecy. Knowing the channel coefficient between each transmitter and receiver antenna pair at the transmitter, the method of the present invention calculates the artificial signal that minimizes the Euclidean distance between the desired and received data symbols if the precoding/combining matrix pair from the set that has the minimum Euclidean distance to the singular value decomposition (SVD) of the channel matrix is used for transmission and reception. The artificial signal may be fed to the precoder, instead of the actual desired data symbols, or may be transmitted directly to reduce computational complexity, power consumption and processing delay if the hardware configuration allows.
摘要:
A system and method for increasing the capacity of a Multiple-Input Multiple-Output (MIMO) system at desired user's locations and reducing the capacity at locations, other than that of the desired user, while also providing secrecy. Knowing the channel coefficient between each transmitter and receiver antenna pair at the transmitter, the method of the present invention calculates the artificial signal that minimizes the Euclidean distance between the desired and received data symbols if the precoding/combining matrix pair from the set that has the minimum Euclidean distance to the singular value decomposition (SVD) of the channel matrix is used for transmission and reception. The artificial signal may be fed to the precoder, instead of the actual desired data symbols, or may be transmitted directly to reduce computational complexity, power consumption and processing delay if the hardware configuration allows.
摘要:
Adaptive windowing of insufficient cyclic prefix (CP) for joint minimization of intersymbol interference (ISI) and adjacent channel interference (ACI) is provided. The proposed subcarrier specific windowing scheme improves the signal-to-interference ratio (SIR) even when the cyclic prefix (CP) is insufficient. Average optimal window lengths depend only on the power density profiles (PDPs), and although instantaneous optimal window lengths depend on users' channel impulse responses (CIRs), fluctuation is little. Therefore, subcarrier specific windowing outperforms fixed windowing, even with outdated window lengths in the case of powerful interferers.
摘要:
Adaptive windowing of insufficient cyclic prefix (CP) for joint minimization of intersymbol interference (ISI) and adjacent channel interference (ACI) is provided. The proposed subcarrier specific windowing scheme improves the signal-to-interference ratio (SIR) even when the cyclic prefix (CP) is insufficient. Average optimal window lengths depend only on the power density profiles (PDPs), and although instantaneous optimal window lengths depend on users' channel impulse responses (CIRs), fluctuation is little. Therefore, subcarrier specific windowing outperforms fixed windowing, even with outdated window lengths in the case of powerful interferers.
摘要:
A system and method for reducing the OFDM out-of-band emissions (OOBE) by utilizing a transmitter windowing operation that smooths the inherent rectangular pulse shape of the OFDM signals. The technique retains the main design of the OFDM receivers and provides backward compatibility for the existing OFDM-based systems. The guard band and the window parameters that control the guard duration are jointly optimized regarding the use case and the power offset between the users. To fully exploit and further increase the potential of adaptive guards, an interference-based scheduling algorithm is proposed as well.
摘要:
A system and method for adaptively utilizing transmitter windowing, receiver windowing and alignment signals for minimizing interference and maximizing capacity and energy efficiency based upon the received power ratios of links in adjacent bands of a cellular communication network.
摘要:
A system and method for adaptively utilizing transmitter windowing, receiver windowing and alignment signals for minimizing interference and maximizing capacity and energy efficiency based upon the received power ratios of links in adjacent bands of a cellular communication network.
摘要:
An optimum time domain windowing scheme for orthogonal frequency-division multiplexing (OFDM)-based waveforms in the sense of spectral concentration is proposed. Instead of evenly suppressing the sidelobes along the frequency, the sidelobe power is concentrated within a guard band while maximally suppressing the power for a desired frequency range. This is achieved by employing optimum finite duration pulses, prolate spheroidal wave functions (PSWF), to shape the OFDM transmit pulse. Also with per-subcarrier windowing scheme, the effect of inner subcarriers on sidelobes is diminished by utilizing the concentration bandwidth versus out-of-band power trade-off in PSWF and the multicarrier nature of the OFDM.