摘要:
Gate induced drain leakage in a tunnel field effect transistor is reduced while drive current is increased by orienting adjacent semiconductor bodies, based on their respective crystal orientations or axes, to optimize band-to-band tunneling at junctions. Maximizing band-to-band tunneling at a source-channel junction increases drive current, while minimizing band-to-band tunneling at a channel-drain junction decreases GIDL. GIDL can be reduced by an order of magnitude in an embodiment. Power consumption for a given frequency can also be reduced by an order of magnitude.
摘要:
A stack of a gate dielectric layer and a workfunction material layer are deposited over a plurality of semiconductor material portions, which can be a plurality of semiconductor fins or a plurality of active regions in a semiconductor substrate. A first gate conductor material applying a first stress is formed on a first portion of the workfunction material layer located on a first semiconductor material portion, and a second gate conductor material applying a second stress is formed on a second portion of the workfunction material layer located on a second semiconductor material portion. The first and second stresses are different in at least one of polarity and magnitude, thereby inducing different strains in the first and second portions of the workfunction material layer. The different strains cause the workfunction shift differently in the first and second portions of the workfunction material layer, thereby providing devices having multiple different workfunctions.
摘要:
A communication device (310) is provided that includes a nano-sized RF antenna (100) having low power consumption and wide-range frequency spectrum based on bottom-up nanotechnology. The antenna (100) includes an insulator layer (110) positioned between a free magnetic layer (112) and a fixed magnetic layer (108). A DC voltage source (124) is coupled to the free magnetic layer (112) and the fixed magnetic layer (108) for providing a current (118) therethrough. A detector (126) is coupled between the antenna (100) and the DC voltage source (124) for detecting a change in the current (118) in response to a radiated signal being received by the antenna (100) which causes a change in the spin on electrons in the free magnetic layer (112).
摘要:
Hydrogen storage materials are provided that may be capable of a hydrogenated state and dehydrogenated state. The hydrogen storage material comprises a plurality of hydrogen storage molecular units. Each hydrogen storage molecular unit comprises a transition metal bonded to one or more elements from period 2 of the periodic table, wherein the hydrogen storage material includes at least 6.5% molecular hydrogen by weight when in the hydrogenated state and is stable at temperatures below about 200° C. and at pressures of about 1 atm and below. The hydrogen storage materials may be used in conjunction with fuel cells in portable electronic devices.