Abstract:
A method includes detecting a surface in proximity to a mobile device using sensor data and determining an acoustic reflectivity or acoustic absorptivity of the surface using the sensor data. The method may further compensate for the acoustic reflectivity or acoustic absorptivity by controlling a configurable group of microphones of the mobile device. Compensating for the surface acoustic reflectivity or acoustic absorptivity may include beamforming the outputs of the configurable group of microphones to obtain one of an omnidirectional beamform pattern or a directional beamform pattern. An apparatus that performs the method include a configurable group of microphones, a signal conditioner, and a surface compensator. The surface compensator is operative to detect a surface in proximity to the apparatus and determine a surface acoustic reflectivity or acoustic absorptivity.
Abstract:
A method performed by a portable communication device includes determining a list of at least one target device in proximity to the portable communication device. The method further includes receiving a set of non-tactile user commands that indicates selected content and a selected set of target devices on the list and controlling sharing of the selected content between the portable communication device and the selected set of target devices.
Abstract:
An electronic apparatus is provided that has a rear-side and a front-side, a first microphone that generates a first signal, and a second microphone that generates a second signal. An automated balance controller generates a balancing signal based on a proximity sensor signal. A processor processes the first and second signals to generate at least one beamformed audio signal, where an audio level difference between a front-side gain and a rear-side gain of the beamformed audio signal is controlled during processing based on the balancing signal.
Abstract:
An electronic device includes a microphone that receives an audio signal that includes a spoken trigger phrase, and a processor that is electrically coupled to the microphone. The processor measures characteristics of the audio signal, and determines, based on the measured characteristics, whether the spoken trigger phrase is acceptable for trigger phrase model training. If the spoken trigger phrase is determined not to be acceptable for trigger phrase model training, the processor rejects the trigger phrase for trigger phrase model training.
Abstract:
An electronic device includes a microphone that receives an audio signal, and a processor that is electrically coupled to the microphone. The processor detects a trigger phrase in the received audio signal and measure characteristics of the detected trigger phrase. Based on the measured characteristics of the detected trigger phrase, the processor determines whether the detected trigger phrase is valid.