Abstract:
A multilayer ceramic electronic component in which an interface of an edge region of an external electrode that extends around to a side surface of a ceramic body and the ceramic of the surface of the ceramic body in contact therewith, there exists glass (a) containing BaO serving as a first alkaline earth oxide and at least one of CaO and SrO serving as a second alkaline earth oxide, (b) having a total content ratio of the first alkaline earth oxide and the second alkaline earth oxide in a range of 30 to 70 mol %, and (c) having an SiO2 content ratio in a range of 15 to 60 mol %. The molar ratio of the first alkaline earth oxide to the second alkaline earth oxide is in a range of 0.1 to 0.5.
Abstract:
An external electrode included in a laminated ceramic electronic component is formed on a ceramic body by baking a conductive paste including a glass component. The ceramic body with the conductive paste applied thereto is subjected to heat treatment under the conditions where the top temperature is 800° C. or higher, and the electromotive force at the top temperature is 600 to 900 mV. In this heat treatment, the glass component in the conductive paste penetrates into grain boundaries between ceramic grains of the ceramic body, and a crystalline substance containing elements constituting the glass component is generated which has dissolving resistance against plating solutions.
Abstract:
A multilayer ceramic electronic component in which an interface of an edge region of an external electrode that extends around to a side surface of a ceramic body and the ceramic of the surface of the ceramic body in contact therewith, there exists glass (a) containing BaO serving as a first alkaline earth oxide and at least one of CaO and SrO serving as a second alkaline earth oxide, (b) having a total content ratio of the first alkaline earth oxide and the second alkaline earth oxide in a range of 30 to 70 mol %, and (c) having an SiO2 content ratio in a range of 15 to 60 mol %. The molar ratio of the first alkaline earth oxide to the second alkaline earth oxide is in a range of 0.1 to 0.5.
Abstract:
A ceramic electronic component wherein outer electrode is placed over both end portions of a ceramic body. A first coating mainly containing Ni and a second coating containing Sn, solder, or the like are placed on a surface of the outer electrode. The outer electrode includes an end-surface portion and a side-surface turnover portion. The outer electrode includes a glass layer which is placed in a region within at least 5 μm in linear distance L from a covering end portion of the side-surface turnover portion in a direction toward the end-surface portion so as to be in contact with the ceramic body and which contains, at least, Si. The average thickness t of the glass layer is 3 μm to 10 μm. The content of a Si component is 11% by weight or more (preferably 40% by weight or less).
Abstract:
A monolithic ceramic electronic component having outer electrodes that include an inorganic substance containing at least Si, a crystal phase C containing at least Si, Ti, and Ba at the interfaces to a ceramic layer in peripheral end portions of the outer electrodes. A value of the crystal phase area ratio indicating the relationship between the area of the crystal phase C and the area of a glass phase G, which are formed at the interface to the ceramic layer, in a region within 5 μm from the peripheral end portion of the outer electrode is within a range of 75% to 98%.
Abstract:
A monolithic ceramic electronic component having outer electrodes that include an inorganic substance containing at least Si, a crystal phase C containing at least Si, Ti, and Ba at the interfaces to a ceramic layer in peripheral end portions of the outer electrodes. A value of the crystal phase area ratio indicating the relationship between the area of the crystal phase C and the area of a glass phase G, which are formed at the interface to the ceramic layer, in a region within 5 μm from the peripheral end portion of the outer electrode is within a range of 75% to 98%.
Abstract:
A multilayer ceramic electronic component in which an interface of an edge region of an external electrode that extends around to a side surface of a ceramic body and the ceramic configuring a surface of the ceramic body, an inorganic matter is present containing 26 mol % or more and less than 45 mol % of SiO2 and having a molar ratio (TiO2+ZrO2)/(SiO2+TiO2+ZrO2) of 0.154 or more, or an inorganic matter is present containing 45 mol % or more of SiO2 and having a molar ratio (TiO2+ZrO2)/(SiO2+TiO2+ZrO2) of 0.022 or more. Furthermore, the inorganic matter may contain B2O3 having a molar ratio relative to SiO2 within 0.25≤B2O3/SiO2≤0.5.
Abstract:
A multilayer ceramic electronic component includes a ceramic body having an end surface and a side surface adjacent to thereto such that the end surface and the side surface meet at an edge. The ceramic body has a plurality of internal electrodes with adjacent pairs of the internal electrodes being separated by a respective ceramic layer. An external electrode containing a metal, an inorganic component and voids is electrically connected to at least some of the internal electrodes and both covers the end surface and extends over the edge onto the side surface to form an extending-around portion which extends at least 50 μm onto the side surface as measured in a direction perpendicular to the edge and ends at a leading edge remote from the edge. A portion of the extending-around area which extends 50 μm from the leading edge towards the edge has an average occupancy area ratio which is at least 25 but not greater than 75. The occupancy area ratio is the ratio between the area of the conductive component and an area of the inorganic component on the one hand to the area of the conductive component, the area of the inorganic component and the area of the voids on the other.
Abstract:
An external electrode included in a laminated ceramic electronic component is formed on a ceramic body by baking a conductive paste including a glass component. The ceramic body with the conductive paste applied thereto is subjected to heat treatment under the conditions where the top temperature is 800° C. or higher, and the electromotive force at the top temperature is 600 to 900 mV. In this heat treatment, the glass component in the conductive paste penetrates into grain boundaries between ceramic grains of the ceramic body, and a crystalline substance containing elements constituting the glass component is generated which has dissolving resistance against plating solutions.
Abstract:
A monolithic ceramic electronic component having outer electrodes that include an inorganic substance containing at least Si, a crystal phase C containing at least Si, Ti, and Ba at the interfaces to a ceramic layer in peripheral end portions of the outer electrodes. A value of the crystal phase area ratio indicating the relationship between the area of the crystal phase C and the area of a glass phase G, which are formed at the interface to the ceramic layer, in a region within 5 μm from the peripheral end portion of the outer electrode is within a range of 75% to 98%.